7,894 research outputs found

    Performance of three-photon PET imaging: Monte Carlo simulations

    Full text link
    We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size, and the energies of the three gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters: 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scanning configurations are assessed. A simple formula for minimum size of lesions detectable in the three-gamma based images is derived. Depending on the contrast and total number of registered counts, lesions of a few mm size for human and sub mm for small animal scanners can be detected

    High Resolution STIS/HST and HIRES/Keck Spectra of Three Weak MgII Absorbers Toward PG 1634+706

    Full text link
    High resolution optical (HIRES/Keck) and UV (STIS/HST) spectra, covering a large range of chemical transitions, are analyzed for three single-cloud weak MgII absorption systems along the line of sight toward the quasar PG 1634+706. Weak MgII absorption lines in quasar spectra trace metal-enriched environments that are rarely closely associated with the most luminous galaxies (>0.05L^*). The two weak MgII systems at z=0.81 and z=0.90 are constrained to have >=solar metallicity, while the metallicity of the z=0.65 system is not as well-constrained, but is consistent with >1/10th solar. These weak MgII clouds are likely to be local pockets of high metallicity in a lower metallicity environment. All three systems have two phases of gas, a higher density region that produces narrower absorption lines for low ionization transitions, such as MgII, and a lower density region that produces broader absorption lines for high ionization transitions, such as CIV. The CIV profile for one system (at z=0.81) can be fit with a single broad component (b~10 km/s), but those for the other two systems require one or two additional offset high ionization clouds. Two possible physical pictures for the phase structure are discussed: one with a low-ionization, denser phase embedded in a lower density surrounding medium, and the other with the denser clumps surrounding more highly ionized gas.Comment: 32 pages, 4 figures; to appear in ApJ on May 20, 200

    Simulations of slow positron production using a low energy electron accelerator

    Full text link
    Monte Carlo simulations of slow positron production via energetic electron interaction with a solid target have been performed. The aim of the simulations was to determine the expected slow positron beam intensity from a low energy, high current electron accelerator. By simulating (a) the fast positron production from a tantalum electron-positron converter and (b) the positron depth deposition profile in a tungsten moderator, the slow positron production probability per incident electron was estimated. Normalizing the calculated result to the measured slow positron yield at the present AIST LINAC the expected slow positron yield as a function of energy was determined. For an electron beam energy of 5 MeV (10 MeV) and current 240 μ\muA (30 μ\muA) production of a slow positron beam of intensity 5 ×\times 106^{6} s1^{-1} is predicted. The simulation also calculates the average energy deposited in the converter per electron, allowing an estimate of the beam heating at a given electron energy and current. For low energy, high-current operation the maximum obtainable positron beam intensity will be limited by this beam heating.Comment: 11 pages, 15 figures, submitted to Review of Scientific Instrument

    Neutron reflection from the liquid helium surface.

    Get PDF
    The reflection of neutrons from a helium surface has been observed for the first time. The 4He surface is smoother in the superfluid state at 1.54 K than in the case of the normal liquid at 2.3 K. In the superfluid state we also observe a surface layer ~200 Å thick which has a subtly different neutron scattering cross-section, which may be explained by an enhanced Bose-Einstein condensate fraction close to the helium surface. The application of neutron reflectometry described in this paper creates new and exciting opportunities for the surface and interfacial study of quantum fluids

    Self-trapping at the liquid vapor critical point

    Full text link
    Experiments suggest that localization via self-trapping plays a central role in the behavior of equilibrated low mass particles in both liquids and in supercritical fluids. In the latter case, the behavior is dominated by the liquid-vapor critical point which is difficult to probe, both experimentally and theoretically. Here, for the first time, we present the results of path-integral computations of the characteristics of a self-trapped particle at the critical point of a Lennard-Jones fluid for a positive particle-atom scattering length. We investigate the influence of the range of the particle-atom interaction on trapping properties, and the pick-off decay rate for the case where the particle is ortho-positronium.Comment: 12 pages, 3 figures, revtex4 preprin
    corecore