55 research outputs found

    Attentive brain states in infants with and without later autism

    Get PDF
    Abstract: Early difficulties in engaging attentive brain states in social settings could affect learning and have cascading effects on social development. We investigated this possibility using multichannel electroencephalography during a face/non-face paradigm in 8-month-old infants with (FH, n = 91) and without (noFH, n = 40) a family history of autism spectrum disorder (ASD). An event-related potential component reflecting attention engagement, the Nc, was compared between FH infants who received a diagnosis of ASD at 3 years of age (FH-ASD; n = 19), FH infants who did not (FH-noASD; n = 72) and noFH infants (who also did not, hereafter noFH-noASD; n = 40). ‘Prototypical’ microstates during social attention were extracted from the noFH-noASD group and examined in relation to later categorical and dimensional outcome. Machine-learning was used to identify the microstate features that best predicted ASD and social adaptive skills at three years. Results suggested that whilst measures of brain state timing were related to categorical ASD outcome, brain state strength was related to dimensional measures of social functioning. Specifically, the FH-ASD group showed shorter Nc latency relative to other groups, and duration of the attentive microstate responses to faces was informative for categorical outcome prediction. Reduced Nc amplitude difference between faces with direct gaze and a non-social control stimulus and strength of the attentive microstate to faces contributed to the prediction of dimensional variation in social skills. Taken together, this provides consistent evidence that atypical attention engagement precedes the emergence of difficulties in socialization and indicates that using the spatio-temporal characteristics of whole-brain activation to define brain states in infancy provides an important new approach to understanding of the neurodevelopmental mechanisms that lead to ASD

    Characterizing the Interplay Between Autism Spectrum Disorder and Comorbid Medical Conditions: An Integrative Review

    Get PDF
    Co-occurring medical disorders and associated physiological abnormalities in individuals with autism spectrum disorder (ASD) may provide insight into causal pathways or underlying biological mechanisms. Here, we review medical conditions that have been repeatedly highlighted as sharing the strongest associations with ASD—epilepsy, sleep, as well as gastrointestinal and immune functioning. We describe within each condition their prevalence, associations with behavior, and evidence for successful treatment. We additionally discuss research aiming to uncover potential aetiological mechanisms. We then consider the potential interaction between each group of conditions and ASD and, based on the available evidence, propose a model that integrates these medical comorbidities in relation to potential shared aetiological mechanisms. Future research should aim to systematically examine the interactions between these physiological systems, rather than considering these in isolation, using robust and sensitive biomarkers across an individual's development. A consideration of the overlap between medical conditions and ASD may aid in defining biological subtypes within ASD and in the development of specific targeted interventions

    Autism diagnosis differentiates neurophysiological responses to faces in adults with tuberous sclerosis complex

    Get PDF
    - Background: Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder that is likely to be the outcome of complex aetiological mechanisms. One strategy to provide insight is to study ASD within tuberous sclerosis complex (TSC), a rare disorder with a high incidence of ASD, but for which the genetic cause is determined. Individuals with ASD consistently demonstrate face processing impairments, but these have not been examined in adults with TSC using event-related potentials (ERPs) that are able to capture distinct temporal stages of processing. - Methods: For adults with TSC (n = 14), 6 of which had a diagnosis of ASD, and control adults (n = 13) passively viewed upright and inverted human faces with direct or averted gaze, with concurrent EEG recording. Amplitude and latency of the P1 and N170 ERPs were measured. - Results: Individuals with TSC + ASD exhibited longer N170 latencies to faces compared to typical adults. Typical adults and adults with TSC-only exhibited longer N170 latency to inverted versus upright faces, whereas individuals with TSC + ASD did not show latency differences according to face orientation. In addition, individuals with TSC + ASD showed increased N170 latency to averted compared to direct gaze, which was not demonstrated in typical adults. A reduced lateralization was shown for the TSC + ASD groups on P1 and N170 amplitude. - Conclusions: The findings suggest that individuals with TSC + ASD may have similar electrophysiological abnormalities to idiopathic ASD and are suggestive of developmental delay. Identifying brain-based markers of ASD that are similar in TSC and idiopathic cases is likely to help elucidate the risk pathways to ASD

    News from Academy Bay

    Get PDF
    CDRS Research Highlights, 2004. Plants. Social Sciences. Vertebrates. Invasive Species Total Control Plan. Terrestrial Invertebrates. Project Isabela. Marine Sciences

    Neural and behavioural indices of face processing in siblings of children with autism spectrum disorder (ASD): A longitudinal study from infancy to mid-childhood.

    Get PDF
    Impaired face processing is proposed to play a key role in the early development of autism spectrum disorder (ASD) and to be an endophenotypic trait which indexes genetic risk for the disorder. However, no published work has examined the development of face processing abilities from infancy into the school-age years and how they relate to ASD symptoms in individuals with or at high-risk for ASD. In this novel study we investigated neural and behavioural measures of face processing at age 7 months and again in mid-childhood (age 7 years) as well as social-communication and sensory symptoms in siblings at high (n = 42) and low (n = 35) familial risk for ASD. In mid-childhood, high-risk siblings showed atypical P1 and N170 event-related potential correlates of face processing and, for high-risk boys only, poorer face and object recognition ability compared to low-risk siblings. These neural and behavioural atypicalities were associated with each other and with higher social-communication and sensory symptoms in mid-childhood. Additionally, more atypical neural correlates of object (but not face) processing in infancy were associated with less right-lateralised (more atypical) N170 amplitudes and greater social-communication problems in mid-childhood. The implications for models of face processing in ASD are discussed
    corecore