53 research outputs found

    A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation

    Full text link
    [EN] Isophthalic acid (IPA) has been considered to build metal-organic frameworks (MOFs), owing to its facile availability, unique connection angle-mode, and a wide range of functional groups attached. Constructing titanium-IPA frameworks that possess photoresponse properties is an alluring characteristic with respect to the challenge of synthesizing new titanium-based MOFs (Ti-MOFs) Here, we report the first Ti-IPA MOF (MIP-208) that efficiently combines the use of preformed Ti-8 oxoclusters and in situ acetylation of the 5-NH2-IPA linker. The mixed solid-solution linkers strategy was successfully applied, resulting in a series of multivariate MIP-208 structures with tunable chemical environments and sizable porosity. MIP-208 shows the best result among the pure MOF catalysts for the photocatalytic methanation of carbon dioxide. To improve the photocatalytic performance, ruthenium oxide nanoparticles were photo-deposited on MIP-208, forming a highly active and selective composite catalyst, MIP-208@RuOx, which features a notable visible-light response coupled with excellent stability and recycling ability.S.W. acknowledges the support from the National Natural Science Foundation of China (22071234) and the Fundamental Research Funds for the Central Universities (WK2480000007). S.N. thanks the Ministerio de Ciencia, Innovacion y Universidades (RTI2018-099482-A-I00 project, the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), and Generalitat Valenciana grupos de investigacion consolidables (AICO/2019/214 project) and Agencia Valenciana de la Innovacion (INNEST/2020/111 project) for financial support. C.-C.C. acknowledges the support from the Program of China Scholarship Council (201700260093) and PHC Cai YuanPei Project (38893VJ). C.M.-C. is grateful for financial support from the Institut Universitaire de France (IUF) and the Paris Ile-de-France Region -DIM "Respore.'' H.G. thanks the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO2-1) and Generalitat Valenciana (Prometeo2017/083) for financial support. The authors thank the staff at Synchrotron SOLEIL and the associated scientists for beamtime and assistance during SCXRD data collections on PROXIMA 2A, as well as Dr. Peng Guo and Dr. Nana Yan from Dalian Institute of Chemical Physics (Chinese Academy of Sciences) for the collection of high-resolution PXRD data for Rietveld refinement.Wang, S.; Cabrero-Antonino, M.; Navalón Oltra, S.; Cao, C.; Tissot, A.; Dovgaliuk, I.; Marrot, J.... (2020). A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. Chem. 6(12):3409-3427. https://doi.org/10.1016/j.chempr.2020.10.017S34093427612Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256hChen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018Yeung, H. H.-M., Li, W., Saines, P. J., Köster, T. K. J., Grey, C. P., & Cheetham, A. K. (2013). Ligand-Directed Control over Crystal Structures of Inorganic-Organic Frameworks and Formation of Solid Solutions. Angewandte Chemie International Edition, 52(21), 5544-5547. doi:10.1002/anie.201300440Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003jDesai, A. V., Sharma, S., Let, S., & Ghosh, S. K. (2019). N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 395, 146-192. doi:10.1016/j.ccr.2019.05.020Zhang, H., Zou, R., & Zhao, Y. (2015). Macrocycle-based metal-organic frameworks. Coordination Chemistry Reviews, 292, 74-90. doi:10.1016/j.ccr.2015.02.012He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041bWang, H., Zhu, Q.-L., Zou, R., & Xu, Q. (2017). Metal-Organic Frameworks for Energy Applications. Chem, 2(1), 52-80. doi:10.1016/j.chempr.2016.12.002Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680hSilva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307eRen, J., Dyosiba, X., Musyoka, N. M., Langmi, H. W., Mathe, M., & Liao, S. (2017). Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 352, 187-219. doi:10.1016/j.ccr.2017.09.005Ohtani, M., Takase, K., Wang, P., Higashi, K., Ueno, K., Yasuda, N., … Kobiro, K. (2016). Water-triggered macroscopic structural transformation of a metal–organic framework. CrystEngComm, 18(11), 1866-1870. doi:10.1039/c6ce00031bReinsch, H., De Vos, D., & Stock, N. (2013). Structure and Properties of [Al4(OH)8(o-C6H4(CO2)2)2]·H2O, a Layered Aluminum Phthalate. Zeitschrift für anorganische und allgemeine Chemie, 639(15), 2785-2789. doi:10.1002/zaac.201300357Li, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186-2187. doi:10.1021/ja974172gBanerjee, D., & Parise, J. B. (2011). Recent Advances in s-Block Metal Carboxylate Networks. Crystal Growth & Design, 11(10), 4704-4720. doi:10.1021/cg2008304Pagis, C., Ferbinteanu, M., Rothenberg, G., & Tanase, S. (2016). Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catalysis, 6(9), 6063-6072. doi:10.1021/acscatal.6b01935Aguirre-Díaz, L. M., Reinares-Fisac, D., Iglesias, M., Gutiérrez-Puebla, E., Gándara, F., Snejko, N., & Monge, M. Á. (2017). Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coordination Chemistry Reviews, 335, 1-27. doi:10.1016/j.ccr.2016.12.003Kang, M., Luo, D., Deng, Y., Li, R., & Lin, Z. (2014). Solvothermal synthesis and characterization of new calcium carboxylates based on cluster- and rod-like building blocks. Inorganic Chemistry Communications, 47, 52-55. doi:10.1016/j.inoche.2014.07.015Bourne, S. A., Lu, J., Mondal, A., Moulton, B., & Zaworotko, M. J. (2001). Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity. Angewandte Chemie International Edition, 40(11), 2111-2113. doi:10.1002/1521-3773(20010601)40:113.0.co;2-fVodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M., & Yaghi, O. M. (2001). Chemical Communications, (24), 2534-2535. doi:10.1039/b108684gBarthelet, K., Riou, D., & Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492-1493. doi:10.1039/b202749fQazvini, O. T., Babarao, R., Shi, Z.-L., Zhang, Y.-B., & Telfer, S. G. (2019). A Robust Ethane-Trapping Metal–Organic Framework with a High Capacity for Ethylene Purification. Journal of the American Chemical Society, 141(12), 5014-5020. doi:10.1021/jacs.9b00913Kim, J.-Y., Norquist, A. J., & O’Hare, D. (2003). Incorporation of uranium(vi) into metal–organic framework solids, [UO2(C4H4O4)]·H2O, [UO2F(C5H6O4)]·2H2O, and [(UO2)1.5(C8H4O4)2]2[(CH3)2NCOH2]·H2O. Dalton Trans., (14), 2813-2814. doi:10.1039/b306733pWang, G., Song, T., Fan, Y., Xu, J., Wang, M., Zhang, H., … Wang, L. (2010). [Y2(H2O)(BDC)3(DMF)]·(DMF)3: A rare 2-D (42.6)(45.6)2(48.62)(49.65.8) net with multi-helical-array and opened windows. Inorganic Chemistry Communications, 13(4), 502-505. doi:10.1016/j.inoche.2010.01.021Mihalcea, I., Henry, N., Clavier, N., Dacheux, N., & Loiseau, T. (2011). Occurence of an Octanuclear Motif of Uranyl Isophthalate with Cation–Cation Interactions through Edge-Sharing Connection Mode. Inorganic Chemistry, 50(13), 6243-6249. doi:10.1021/ic2005584Vougo-Zanda, M., Wang, X., & Jacobson, A. J. (2007). Influence of Ligand Geometry on the Formation of In−O Chains in Metal-Oxide Organic Frameworks (MOOFs). Inorganic Chemistry, 46(21), 8819-8824. doi:10.1021/ic701126tBu, F., & Xiao, S.-J. (2010). A 4-connected anionic metal–organic nanotube constructed from indium isophthalate. CrystEngComm, 12(11), 3385. doi:10.1039/c001284jPanda, T., Kundu, T., & Banerjee, R. (2013). Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks. Chemical Communications, 49(55), 6197. doi:10.1039/c3cc41939hChen, P.-K., Che, Y.-X., Zheng, J.-M., & Batten, S. R. (2007). Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation. Chemistry of Materials, 19(9), 2162-2167. doi:10.1021/cm062801sZhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J., & Yao, Y.-G. (2008). Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metal−Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 47(18), 8286-8293. doi:10.1021/ic800871rZhang, J.-P., Ghosh, S. K., Lin, J.-B., & Kitagawa, S. (2009). New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 48(16), 7970-7976. doi:10.1021/ic900919wMcCormick, L. J., Morris, S. A., Slawin, A. M. Z., Teat, S. J., & Morris, R. E. (2016). Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth & Design, 16(10), 5771-5780. doi:10.1021/acs.cgd.6b00853Chen, J., Li, C.-P., & Du, M. (2011). Substituent effect of R-isophthalates (R = –H, –CH3, –OCH3, –tBu, –OH, and –NO2) on the construction of CdIIcoordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 13(6), 1885-1893. doi:10.1039/c0ce00555jDu, M., Zhang, Z.-H., You, Y.-P., & Zhao, X.-J. (2008). R-Isophthalate (R = –H, –NO2, and –COOH) as modular building blocks for mixed-ligand coordination polymers incorporated with a versatile connector 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole. CrystEngComm, 10(3), 306-321. doi:10.1039/b711447hChen, L., Ye, J.-W., Wang, H.-P., Pan, M., Yin, S.-Y., Wei, Z.-W., … Su, C.-Y. (2017). Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 8(1). doi:10.1038/ncomms15985Yuan, S., Qin, J.-S., Lollar, C. T., & Zhou, H.-C. (2018). Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 4(4), 440-450. doi:10.1021/acscentsci.8b00073Rieth, A. J., Wright, A. M., & Dincă, M. (2019). Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 4(11), 708-725. doi:10.1038/s41578-019-0140-1Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398bZhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013Benoit, V., Pillai, R. S., Orsi, A., Normand, P., Jobic, H., Nouar, F., … Llewellyn, P. L. (2016). MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport. Journal of Materials Chemistry A, 4(4), 1383-1389. doi:10.1039/c5ta09349jSun, Y., Liu, Y., Caro, J., Guo, X., Song, C., & Liu, Y. (2018). In‐Plane Epitaxial Growth of Highly c ‐Oriented NH 2 ‐MIL‐125(Ti) Membranes with Superior H 2 /CO 2 Selectivity. Angewandte Chemie International Edition, 57(49), 16088-16093. doi:10.1002/anie.201810088Wahiduzzaman, M., Wang, S., Schnee, J., Vimont, A., Ortiz, V., Yot, P. G., … Devautour-Vinot, S. (2019). A High Proton Conductive Hydrogen-Sulfate Decorated Titanium Carboxylate Metal−Organic Framework. ACS Sustainable Chemistry & Engineering, 7(6), 5776-5783. doi:10.1021/acssuschemeng.8b05306Pinto, R. V., Wang, S., Tavares, S. R., Pires, J., Antunes, F., Vimont, A., … Pinto, M. L. (2020). Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angewandte Chemie International Edition, 59(13), 5135-5143. doi:10.1002/anie.201913135Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001dTachikawa, T., Tojo, S., Fujitsuka, M., Sekino, T., & Majima, T. (2006). Photoinduced Charge Separation in Titania Nanotubes. The Journal of Physical Chemistry B, 110(29), 14055-14059. doi:10.1021/jp063800qWang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-wSerre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., … Férey, G. (2006). Synthesis, Structure and Properties of Related Microporous N,N‘-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 18(6), 1451-1457. doi:10.1021/cm052149lLi, C., Xu, H., Gao, J., Du, W., Shangguan, L., Zhang, X., … Chen, B. (2019). Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H2 evolution. Journal of Materials Chemistry A, 7(19), 11928-11933. doi:10.1039/c9ta01942aKeum, Y., Park, S., Chen, Y.-P., & Park, J. (2018). Titanium-Carboxylate Metal-Organic Framework Based on an Unprecedented Ti-Oxo Chain Cluster. Angewandte Chemie International Edition, 57(45), 14852-14856. doi:10.1002/anie.201809762Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916bPadial, N. M., Castells-Gil, J., Almora-Barrios, N., Romero-Angel, M., da Silva, I., Barawi, M., … Martí-Gastaldo, C. (2019). Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 141(33), 13124-13133. doi:10.1021/jacs.9b04915Wang, S., Reinsch, H., Heymans, N., Wahiduzzaman, M., Martineau-Corcos, C., De Weireld, G., … Serre, C. (2020). Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2(2), 440-450. doi:10.1016/j.matt.2019.11.002Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350uFu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357Duran, D., Couster, S. L., Desjardins, K., Delmotte, A., Fox, G., Meijers, R., … Shepard, W. (2013). PROXIMA 2A – A New Fully Tunable Micro-focus Beamline for Macromolecular Crystallography. Journal of Physics: Conference Series, 425(1), 012005. doi:10.1088/1742-6596/425/1/012005Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., & Stock, N. (2012). Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 25(1), 17-26. doi:10.1021/cm3025445Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302gFérey, G. (2016). Giant flexibility of crystallized organic–inorganic porous solids: facts, reasons, effects and applications. New Journal of Chemistry, 40(5), 3950-3967. doi:10.1039/c5nj02747kLeshuk, T., Parviz, R., Everett, P., Krishnakumar, H., Varin, R. A., & Gu, F. (2013). Photocatalytic Activity of Hydrogenated TiO2. ACS Applied Materials & Interfaces, 5(6), 1892-1895. doi:10.1021/am302903nChen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330fLiu, L., & Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114(19), 9890-9918. doi:10.1021/cr400624rReinsch, H., Waitschat, S., & Stock, N. (2013). Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 42(14), 4840. doi:10.1039/c3dt32355bDeng, H., Doonan, C. J., Furukawa, H., Ferreira, R. B., Towne, J., Knobler, C. B., … Yaghi, O. M. (2010). Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 327(5967), 846-850. doi:10.1126/science.1181761Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136zHelal, A., Yamani, Z. H., Cordova, K. E., & Yaghi, O. M. (2017). Multivariate metal-organic frameworks. National Science Review, 4(3), 296-298. doi:10.1093/nsr/nwx013Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829aLi, R., Hu, J., Deng, M., Wang, H., Wang, X., Hu, Y., … Xiong, Y. (2014). Integration of an Inorganic Semiconductor with a Metal-Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials, 26(28), 4783-4788. doi:10.1002/adma.201400428Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446aUlmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2Younas, M., Loong Kong, L., Bashir, M. J. K., Nadeem, H., Shehzad, A., & Sethupathi, S. (2016). Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy & Fuels, 30(11), 8815-8831. doi:10.1021/acs.energyfuels.6b01723Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001Wenderich, K., & Mul, G. (2016). Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 116(23), 14587-14619. doi:10.1021/acs.chemrev.6b00327Giang, T. P. L., Tran, T. N. M., & Le, X. T. (2012). Preparation and characterization of titanium dioxide nanotube array supported hydrated ruthenium oxide catalysts. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1), 015008. doi:10.1088/2043-6262/3/1/015008Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852Albero, J., Peng, Y., & García, H. (2020). Photocatalytic CO2 Reduction to C2+ Products. ACS Catalysis, 10(10), 5734-5749. doi:10.1021/acscatal.0c00478Mateo, D., Santiago‐Portillo, A., Albero, J., Navalón, S., Alvaro, M., & García, H. (2019). Long‐Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(49), 17843-17848. doi:10.1002/anie.201911600Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287eMateo, D., Asiri, A. M., Albero, J., & García, H. (2018). The mechanism of photocatalytic CO2 reduction by graphene-support

    NMR Crystallography: A tool for the characterization of microporous hybrid solids

    No full text
    International audienc

    Solid state NMR spectroscopy as a powerful tool to investigate the location of fluorinated lipids in highly porous hybrid organic-inorganic nanoparticles

    No full text
    International audienceNanosized metal-organic frameworks (nanoMOFs) have emerged as a new class of biodegradable and non-toxic nanomaterials of high interest for biomedical applications thanks to 2 the possibility to load large amounts of a wide variety of therapeutic molecules in their porous structure. The surface of the highly porous nanoMOFs is usually engineered to increase their colloidal stability, tune their interactions with the biological environment and allow targeting specific cells or organs. However, the atomic-scale analysis of these complex core-shell materials is highly challenging. In this study, we report the investigation of aluminium-based nanoMOFs containing two fluorinated lipids by solid-state NMR spectroscopy, including 27 Al, 1 H and 19 F MAS NMR. The ensemble of NMR data provides a better understanding of the localization and conformation of the fluorinated lipids inside the pores or on the nanoMOF surface

    Use of dissolved hyperpolarized species in NMR: practical considerations

    No full text
    International audienceHyperpolarization techniques that can transiently boost nuclear spin polarization are generally carried out at low temperature-as in the case of dynamic nuclear polarization-or at high temperature in the gaseous state-as in the case of optically pumped noble gases. This review aims at describing the various issues and challenges that have been encountered during dissolution of hyperpolarized species, and solutions to these problems that have been or are currently proposed in the literature. During the transport of molecules from the polarizer to the NMR detection region, and when the hyperpolarized species or a precursor of hyperpolarization (e.g. parahydrogen) is introduced into the solution of interest, several obstacles need to be overcome to keep a high level of final magnetization. The choice of the magnetic field, the design of the dissolution setup, and ways to isolate hyperpolarized compounds from relaxation agents will be presented. Due to the non-equilibrium character of the hyperpolarization, new NMR pulse sequences that perform better than the classical ones will be described. Finally, three applications in the field of biology will be briefly mentioned

    Cyclodextrin-Driven Formation of Double Six-Ring (D6R) Silicate Cage: NMR Spectroscopic Characterization from Solution to Crystals

    Get PDF
    Identification and isolation of secondary building units (SBUs) from synthesis media of zeolites still represent a challenging task for chemists. The cage structure anion Si12O3012− known as the double six-ring (D6R) was synthesized from α-cyclodextrin (α-CD) mediated alkaline silicate solutions and conditions of its stability and reactivity in aqueous solution were studied by using nuclear magnetic resonance (NMR) spectroscopy. A single crystal X-ray diffraction (XRD) analysis revealed a novel polymorph of the hybrid complex K12Si12O30·2α-CD·nD2O (n ≈ 30⁻40), which crystallizes in the orthorhombic C2221 space group symmetry with a = 14.841(4) Å, b = 25.855(6) Å, and c = 41.91(1) Å. The supramolecular adduct of the silicate anion sandwiched by two α-CDs forms a perfect symmetry matching the H-bonding donor-acceptor system between the organic macrocycle and the D6R unit. The driving force of such a hybrid assembly has found to be strongly dependent on the nature of the cation present as large alkali counter ions (K+, Rb+ and Cs+), which stabilize the D6R structure acting as templates. Lastly, we provided the first 29Si MAS NMR measurement of 3Q Si in an isolated D6R unit that allows the verification of the linear correlation between the chemical shift and <SiOSi> bond angle for 3Q Si species in DnR cages (n = 3, 4, 6)

    Routes to improve the strengthening of paper with aminoalkylalkoxysilanes

    No full text
    International audienceAminoalkylalkoxysilane copolymers (co-AAAS) have the ability to simultaneously deacidify and strengthen paper documents. Nevertheless, despite enhancing the tensile strength, they generally fail to improve the folding endurance of the degraded groundwood pulp-rich papers. Focusing on that specific type of papers, several ways to overcome their lack of reinforcement were investigated. Promoting the polymerization of AAAS using catalysts and thermal steps was one of them. A monitoring with FTIR spectroscopy showed that the thermal step was the most efficient in speeding up the hydrolysis and polycondensation of 3aminopropylmethyldiethoxysilane (AM) monomer in aqueous solutions. The progress of the two-steps reaction in terms of degree of polymerization of AAAS polymers was then studied in-situ after heating the paper, using Cross Polarization-Mass Angle Spinning 29 Si solid-state NMR, and was shown to be enhanced as well. The other optimization route explored was to stabilize the paper before treatment. Our previous research had shown that the presence of oxidized groups in paper hampered the strengthening. Sodium borohydride, a known bleaching agent in paper conservation, was used prior to the AAASs treatment to decrease the amount of carbonyls in paper. The reduction and the thermal step were compared in terms of the mechanical properties (folding endurance and tensile strength) upon AAASs treatment of several lignocellulosic papers, including three newsprints dated 1911-1923. The use of sodium borohydride led to a significant improvement of the folding endurance of the samples, an unprecedented result. It enabled at the same time to counteract the yellowing induced by the AAAS and to build a larger alkaline reserve

    A Microporous Zirconium Metal-Organic Framework Based on trans -Aconitic Acid for Selective Carbon Dioxide Adsorption

    No full text
    International audienceThe discovery of naturally occurring linker‐based zirconium MOFs with permanent porosity and accessible functional groups remains a challenge. Using trans‐aconitic acid to assemble with Zr6 oxoclusters under green and scalable conditions, a novel microporous Zr‐aconitate framework has been prepared successfully with a high space‐time yield. This MOF is isostructural to the previously reported Zr‐fumarate, however with a smaller pore size and an abundant concentration of free acetic acid functional groups. This MOF shows an excellent chemical stability under various conditions, including boiling water, concentrated acids, and basic solution with pH below 12. Furthermore, this compound not only shows a higher carbon dioxide uptake compared to the Zr‐fumarate analogue but also exhibits a notably enhanced adsorptive selectivity for carbon dioxide over nitrogen in the entire pressure range.Using trans‐aconitic acid to assemble with Zr6 oxo cluster under green and scalable condition, a microporous Zr‐aconitate framework with abundant free acetic acid functional groups has been prepared. Its structure shows an excellent chemical stability under various conditions, a clearly elevated carbon dioxide uptake and a notably enhanced adsorptive selectivity of carbon dioxide over nitrogen in comparison with Zr‐fumarate

    Doxorubicin-loaded metal-organic frameworks nanoparticles with engineered cyclodextrin coatings: Insights on drug location by solid state nmr spectroscopy

    No full text
    International audienceRecently developed, nanoscale metal-organic frameworks (nanoMOFs) functionalized with versatile coatings are drawing special attention in the nanomedicine field. Here we show the preparation of core–shell MIL-100(Al) nanoMOFs for the delivery of the anticancer drug doxorubicin (DOX). DOX was efficiently incorporated in the MOFs and was released in a progressive manner, depending on the initial loading. Besides, the coatings were made of biodegradable γ-cyclodextrincitrate oligomers (CD-CO) with affinity for both DOX and the MOF cores. DOX was incorporated and released faster due to its affinity for the coating material. A set of complementary solid state nuclear magnetic resonance (ssNMR) experiments including1H-1H and13C-27Al two-dimensional NMR, was used to gain a deep understanding on the multiple interactions involved in the MIL-100(Al) core–shell system. To do so,13C-labelled shells were synthesized. This study paves the way towards a methodology to assess the nanoMOF component localization at a molecular scale and to investigate the nanoMOF physicochemical properties, which play a main role on their biological applications
    corecore