49 research outputs found

    Region-Referenced Spectral Power Dynamics of EEG Signals: A Hierarchical Modeling Approach

    Full text link
    Functional brain imaging through electroencephalography (EEG) relies upon the analysis and interpretation of high-dimensional, spatially organized time series. We propose to represent time-localized frequency domain characterizations of EEG data as region-referenced functional data. This representation is coupled with a hierarchical modeling approach to multivariate functional observations. Within this familiar setting, we discuss how several prior models relate to structural assumptions about multivariate covariance operators. An overarching modeling framework, based on infinite factorial decompositions, is finally proposed to balance flexibility and efficiency in estimation. The motivating application stems from a study of implicit auditory learning, in which typically developing (TD) children, and children with autism spectrum disorder (ASD) were exposed to a continuous speech stream. Using the proposed model, we examine differential band power dynamics as brain function is interrogated throughout the duration of a computer-controlled experiment. Our work offers a novel look at previous findings in psychiatry, and provides further insights into the understanding of ASD. Our approach to inference is fully Bayesian and implemented in a highly optimized Rcpp package

    Flexible Regularized Estimation in High-Dimensional Mixed Membership Models

    Full text link
    Mixed membership models are an extension of finite mixture models, where each observation can partially belong to more than one mixture component. A probabilistic framework for mixed membership models of high-dimensional continuous data is proposed with a focus on scalability and interpretability. The novel probabilistic representation of mixed membership is based on convex combinations of dependent multivariate Gaussian random vectors. In this setting, scalability is ensured through approximations of a tensor covariance structure through multivariate eigen-approximations with adaptive regularization imposed through shrinkage priors. Conditional weak posterior consistency is established on an unconstrained model, allowing for a simple posterior sampling scheme while keeping many of the desired theoretical properties of our model. The model is motivated by two biomedical case studies: a case study on functional brain imaging of children with autism spectrum disorder (ASD) and a case study on gene expression data from breast cancer tissue. These applications highlight how the typical assumption made in cluster analysis, that each observation comes from one homogeneous subgroup, may often be restrictive in several applications, leading to unnatural interpretations of data features.Comment: arXiv admin note: text overlap with arXiv:2206.1208

    A Covariance Based Clustering for Tensor Objects

    Get PDF
    Clustering of tensors with limited sample size has become prevalent in a variety of application areas. Existing Bayesian model based clustering of tensors yields less accurate clusters when the tensor dimensions are sufficiently large, sample size is low and clusters of tensors mainly reveal difference in their variability. This article develops a clustering technique for high dimensional tensors with limited sample size when the clusters show difference in their covariances, rather than in their means. The proposed approach constructs several matrices from a tensor, referred to as transformed features, to adequately estimate its variability along different modes and implements a model-based approximate Bayesian clustering algorithm with the matrices thus constructed, in place with the original tensor data. Although some information in the data is discarded, we gain substantial computational efficiency and accuracy in clustering. Simulation study assesses the proposed approach along with its competitors in terms of estimating the number of clusters, identification of the modal cluster membership along with the probability of mis-classification in clustering (a measure of uncertainty in clustering). The proposed methodology provides novel insights into potential clinical subgroups for children with autism spectrum disorder based on resting-state electroencephalography activity.National Science Foundation Grant DMS-2220840, DMS-2210672 and Office of Naval Research Grant N00014-18-1-274

    Functional Mixed Membership Models

    Full text link
    Mixed membership models, or partial membership models, are a flexible unsupervised learning method that allows each observation to belong to multiple clusters. In this paper, we propose a Bayesian mixed membership model for functional data. By using the multivariate Karhunen-Lo\`eve theorem, we are able to derive a scalable representation of Gaussian processes that maintains data-driven learning of the covariance structure. Within this framework, we establish conditional posterior consistency given a known feature allocation matrix. Compared to previous work on mixed membership models, our proposal allows for increased modeling flexibility, with the benefit of a directly interpretable mean and covariance structure. Our work is motivated by studies in functional brain imaging through electroencephalography (EEG) of children with autism spectrum disorder (ASD). In this context, our work formalizes the clinical notion of "spectrum" in terms of feature membership proportions.Comment: 77 pages, 16 figure

    ERP evidence of semantic processing in children with ASD.

    Get PDF
    25% of children with autism spectrum disorder (ASD) remain minimally verbal (MV), despite intervention. Electroencephalography can reveal neural mechanisms underlying language impairment in ASD, potentially improving our ability to predict language outcomes and target interventions. Verbal (V) and MV children with ASD, along with an age-matched typically developing (TD) group participated in a semantic congruence ERP paradigm, during which pictures were displayed followed by the expected or unexpected word. An N400 effect was evident in all groups, with a shorter latency in the TD group. A late negative component (LNC) also differentiated conditions, with a group by condition by region interaction. Post hoc analyses revealed that the LNC was present across multiple regions in the TD group, in the mid-frontal region in MVASD, and not present in the VASD group. Cluster analysis identified subgroups within the ASD participants. Two subgroups showed markedly atypical patterns of processing, one with reversed but robust differentiation of conditions, and the other with initially reversed followed by typical differentiation. Findings indicate that children with ASD, including those with minimal language, showed EEG evidence of semantic processing, but it was characterized by delayed speed of processing and limited integration with mental representations

    The diagnostic journey of genetically defined neurodevelopmental disorders

    No full text
    BackgroundThe development of advanced genetic technologies has resulted in rapid identification of genetic etiologies of neurodevelopmental disorders (NDDs) and has transformed the classification and diagnosis of various NDDs. However, diagnostic genetics has far outpaced our ability to provide timely medical counseling, guidance, and care for patients with genetically defined NDDs. These patients and their caregivers present with an unmet need for care coordination across multiple domains including medical, developmental, and psychiatric care and for educational resources and guidance from care professionals. After a genetic diagnosis is made, families also face several barriers in access to informed diagnostic evaluations and medical support.MethodsAs part of Care and Research in Neurogenetics (CARING), a multidisciplinary clinical program for children and adults with neurogenetic disorders, we conducted qualitative clinical interviews about the diagnostic journey of families. This included the overall timeline to receiving diagnoses, experiences before and after diagnosis, barriers to care, and resources that helped them to navigate the diagnostic process.ResultsA total of 37 interviews were conducted with parents of children ages 16 months to 33 years. Several key themes were identified: (1) delays between initial caregiver observations and formal developmental or genetic diagnoses; (2) practical barriers to clinical evaluation and care, including long wait times for an appointment, lack of insurance coverage, availability of local evaluations, transportation difficulties, and native language differences; (3) the importance of being part of a patient advocacy group to help navigate the diagnostic journey; and (4) unique challenges faced by adults (18 years or older).ConclusionsFamilies of children with complex neurodevelopmental and genetic disabilities face numerous challenges in finding adequate medical care and services for their child. They experience considerable delays in receiving timely diagnoses and face significant barriers that further delay the process of receiving access to services needed for the child's continued care. The gaps indicated in this study speak to the need for more comprehensive coordination of care for patients with intellectual and developmental disabilities, as well as the development of systematic, disorder-specific resources both for providers and families in order to improve patient outcomes
    corecore