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Abstract

Clustering of tensors with limited sample size has become prevalent in a variety

of application areas. Existing Bayesian model based clustering of tensors yields less

accurate clusters when the tensor dimensions are sufficiently large, sample size is low

and clusters of tensors mainly reveal difference in their variability. This article develops

a clustering technique for high dimensional tensors with limited sample size when the

clusters show difference in their covariances, rather than in their means. The proposed

approach constructs several matrices from a tensor, referred to as transformed features,

to adequately estimate its variability along different modes and implements a model-

based approximate Bayesian clustering algorithm with the matrices thus constructed, in

place with the original tensor data. Although some information in the data is discarded,

we gain substantial computational efficiency and accuracy in clustering. Simulation

study assesses the proposed approach along with its competitors in terms of estimating

the number of clusters, identification of the modal cluster membership along with the

probability of mis-classification in clustering (a measure of uncertainty in clustering).

The proposed methodology provides novel insights into potential clinical subgroups for

children with autism spectrum disorder based on resting-state electroencephalography

activity.

Keywords: Bayesian statistics; Brain electro-encephalogram signal; Clustering; Chinese

restaurant process; Tensor normal distribution.
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1 Introduction

In recent times, multidimensional arrays or tensors are encountered in different disciplines

including datasets from different brain imaging modalities, multi-omics studies, chemomet-

rics and psychometrics. Statistical analysis of tensor data presents challenges over and above

multivariate vector-based methods. First of all, due to the high dimensional nature of tensor

data, inference from tensors often require a large parameter space. Also, extra care needs

to be exercised to exploit structural information in a tensor object. To address such chal-

lenges for tensor data, a plethora of literature has emerged on tensor decomposition (Chi and

Kolda, 2012; Dunson and Xing, 2009; Sun and Li, 2019a) and regressions with general and

symmetric tensors (Zhou et al., 2013; Guhaniyogi et al., 2017; Lock, 2018; Guhaniyogi and

Spencer, 2018; Guha and Guhaniyogi, 2020; Spencer et al., 2020). Most of these approaches

employ low-rank and sparse approximations in the tensor structure to reduce the number of

parameters considerably, and propose novel estimation tools to draw adequate inference.

This article focuses on clustering of tensors into subgroups when tensors in different sub-

groups are barely distinguishable in terms of locations (e.g. mean), but exhibit difference

in their correlation structures/variability. Examples of such datasets can be found in image

analysis, financial, and biological processes. Specifically, we consider a motivating study that

collected resting-state electroencephalogram (EEG) data on children with autism spectrum

disorder (ASD) to better understand the neural mechanisms underlying observed develop-

mental delays. EEG characterizes cortical brain activity via a high-density electrode array

that measures neuronal electrical potentials and their corresponding oscillatory dynamics

(i.e. spectral characteristics via frequency decomposition) which results in a two-way ten-

sor composed of an electrode dimension and a time series or frequency dimension. Recent

studies in cognitive development using EEG highlight the peak alpha frequency (PAF), de-

fined as the location of a prominent peak in the spectral density within the alpha frequency

band (6-14 Hz), as a potential biomarker associated with autism diagnosis (Edgar et al.,

2015; Dickinson et al., 2018; Edgar et al., 2019). Thus, we propose to cluster the ASD chil-

dren into subgroups based on the resting-state EEG data by focusing on alpha band spectral

dynamics across electrodes to understand the role of this novel biomarker in segmenting chil-
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dren with ASD. In a previous analysis of the motivating alpha spectral density EEG data,

Scheffler et al. (2019) found a common alpha spectral mean structure across ASD patients

2-12 years old. However, patients exhibited substantial heterogeneity in patterns of alpha

spectral variation across chronological development suggesting that potential subgroups may

be identified in second rather than first moment information. Thus, in this application, it is

of clinical interest to determine if ASD patients cluster in terms of patterns of alpha spectral

variation across the scalp rather than the mean structure. This hypothesis is supported by

evidence from prior studies that identified EEG spectral coherence, a specific measure EEG

spectral covariation across electrodes, both as a correlate of ASD severity (Duffy and Als,

2012; Duffy et al., 2013) as well as a successful target for unsupervised clustering of ASD

patients (Duffy and Als, 2019). See Schwartz et al. (2017) for a thorough review of EEG

coherence in patients with ASD. While these previous approaches collapsed EEG coherence

across entire power bands prior to analysis, we adopt a more general approach by modeling

covariation among electrodes across the entire alpha spectral band via our tensor framework.

We now offer a brief exposition to the current literature for clustering tensors. Loss-

based algorithmic approaches for clustering of vectors (Hartigan and Wong, 1979; Banerjee

et al., 2004) can be extended to clustering of tensors (Huang et al., 2008), offering a simple

approach that is computationally efficient. However, loss-based approaches focuses on the

aggregation and separation of a sample into groups depending on similarities in locations of

data, and hence is not useful in applications of our interest. Moreover, there is no way to

account for clustering uncertainty in these methods. In contrast with algorithmic clustering,

model-based clustering (Fraley and Raftery, 2002; Müller et al., 2015) exploits the entire

data distribution for clustering. In clustering the tensor observations under the model-

based clustering framework, one simple solution would be to vectorize the tensor object

followed by unsupervised clustering of these vectors, following the literature on clustering

of high dimensional vectors (Medvedovic and Sivaganesan, 2002; Zhong and Ghosh, 2003;

Raftery and Dean, 2006; Fröhwirth-Schnatter and Kaufmann, 2008; Pan and Shen, 2007;

Wang and Zhu, 2008; Lee et al., 2013; Oh and Raftery, 2007). Vectorization of a K-mode

tensor of dimensions p1×· · ·× pK results in a long vector of dimension
∏K

k=1 pk, which often

leads to inaccurate clustering (Celeux et al., 2019). Frühwirth-Schnatter (2006) proposes a
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specific prior elicitation criterion to overcome this issue for moderate dimensions. However,

calibration of hyper-parameters may appear to be difficult for large dimensions.

The model-based clustering typically proceeds by assuming each observation to follow a

finite/infinite mixture of distributions, e.g., Gaussian mixture model (GMM). In the context

of clustering higher order tensors, an ordinary GMM can be extended to mixture of tensor

normal distributions, referred to as tensor normal mixtures (TNM) hereon. The TN dis-

tribution expresses the covariance structure of a tensor in terms of covariance structure in

every mode of the tensor, i.e., the covariance of a K-mode tensor of dimensions p1×· · ·×pK
is expressed with covariance matrices of the order p1× p1,..., pK × pK at K modes. Further,

the tensor covariance structure can be exploited to simultaneously cluster observations and

estimate parameters using either expectation maximization (EM) algorithm, its variants (in

the frequentist framework) or Gibbs sampling (in the Bayesian framework) (Viroli, 2011;

Anderlucci et al., 2015; Gao et al., 2020; Mai et al., 2021a). However, a standard Gibbs

sampling algorithm for the clustering of tensors presents an arduous task of sampling the

covariance matrices in each mode of the tensors at every iteration. Besides being compu-

tationally inefficient, especially for high-dimensional tensors, this often results in inaccurate

estimation of true clusters in presence of limited sample size, as we demonstrate in this

article.

This article tackles the problem from a different point of view. In particular, we focus

on a set of observations from multiple populations all of which follow tensor normal dis-

tributions with the same mean but different covariances. Rather than directly clustering

these observations using model-based clustering that presents challenges described earlier,

we adopt a two-step approach. As a first step, we construct a set of matrices, referred to

as the “transformed features,” from each tensor. We prove that when p1, ..., pK are large,

the transformed features accurately estimate the mode-specific covariance matrices of a TN

distribution, thereby turning the curse of dimensionality into a blessing. In the second step,

a Bayesian mixture model on transformed features is employed to cluster observations. The

proposal makes use of difference between clusters in their covariance structure, and at the

same time avoids drawing Markov Chain Monte Carlo (MCMC) samples for high dimen-

sional covariance parameters from tensor normal distributions, resulting in straightforward
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computation even with large tensor dimensions. Moreover, we provide clustering uncertainty

in terms of mis-classification probabilities.

In the similar spirit as ours, Ieva et al. (2016) developed a novel covariance-based cluster-

ing algorithm exploiting the distance between covariances for multi-variate and functional

data. Their approach is based on the crucial assumption that the data admits only two

groups/clusters, while we do not need to specify the number of clusters. Hallac et al. (2018)

proposed a method for multivariate time-series data to segment and cluster, but they posit

a restrictive Toeplitz structure for the covariance matrix.

Rather than clustering tensors using the mixture of tensor normal distributions, there

is a literature regarding K-means clustering on low-rank approximation of tensors. For ex-

ample, a class of methods assume tensor decomposition of the mean of the tensor normal

distribution, followed by minimization of the total squared Euclidean distance of each obser-

vation mean to its cluster centroid (Sun and Li, 2019a). While the low-rank approximation

is widely adopted in tensor data analysis, it typically work on identifying clusters through

centers of their distributions, and is less suitable for our purpose. Lee et al. (2010), Tan and

Witten (2014) develop bi-clustering methods that simultaneously group features and obser-

vations into clusters. Extensions of the feature-sample bi-clustering for vector observations

are known as the co-clustering or multiway clustering problems (Jegelka et al., 2009; Chi

et al., 2020; Wang and Zeng, 2019), where each mode of the tensor is clustered into groups.

Our problem is different from these works in that our sole goal is to cluster the observations.

Rest of the article evolves as follows. In section 2 we provide a brief introduction to model

based clustering and describe our approach for clustering tensors with covariance estimators.

Posterior computation from the model is described in Section 3. Empirical evaluations with

simulation studies and the resting-state EEG data analysis are presented in Sections 4 and 5,

respectively. Finally, we conclude in Section 6 with an eye towards the future work. Proofs

of the theoretical results are presented in the supplementary material.
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2 Covariance-based Bayesian Tensor Clustering

2.1 Notations

We begin with a quick review of some tensor notations and operations which will be

subsequently used. A more detailed review can be found in Kolda and Bader (2009).

Consider the K-way tensor (also known as K-mode or K-th order tensor) T ∈ Rp1×...×pK

with its (i1, ..., iK)-th element denoted by Ti1,...,iK . When K = 1, the tensor reduces to a

vector and when K = 2, the tensor is a matrix. The vec(T) operator applied to a tensor T

stacks elements into a column vector of dimension p =
∏K

k=1 pk with Ti1,...,iK mapped to the

j-th entry of vec(T), for j = 1 +
∑K

k=1(ik − 1)
∏k−1

k′=1 pk′ .

A fiber is the higher order analogue of a matrix row and column, and is defined by fixing

every index of the tensor but one. A k-mode fiber is a pk-dimensional vector obtained by

fixing all other modes except the k-th mode. For example, a matrix column is a mode-1 fiber

and a row is a mode-2 fiber. There are p/pk such k-mode fibers for T each with dimension

pk × 1. The k-mode matricization of a tensor transforms a tensor into a matrix T(k) ∈

Rpk× p
pk , where T(i1,...,iK) mapping to (ik, j)-th element of the matrix, where j =

∑
k′ 6=k(ik′ −

1)
∏

k′′<k′,k′′ 6=k pk′′ . The k-mode product of a tensor T ∈ Rp1×...×pK and a compatible matrix

A ∈ RJ×pk , will result in a tensor T×k A ∈ Rp1×...×pk−1×J×pk+1×...pK , where each element is

the product of mode-k fiber of T multiplied by A. Notice that this operation reduces to the

usual matrix product for a 2-way tensor and to the inner product for a 1-way tensor. Finally,

for a list of matrices A1, . . . ,AK with compatible sizes Ak ∈ RJk×pk we define the product

T× [A1, . . . ,AK ] = T×1 A1×2 . . .×K AK ∈ RJ1×...×JK . Thus, when A1, . . . ,AK are square

matrices, the resulting tensor is of the same dimension as T. In what follows, we will use

|| · ||F to denote the Frobenius norm of the tensor T given by ||T||F :=
√∑

i1,...,iK
T 2
i1,...,iK

.

2.2 Bayesian Model-based Tensor Clustering Approach

Let Ti be a tensor valued observation in T , T ⊆ Rp1×···×pK , for i = 1, ..., n. Let C =

{C1, ..., Cn(C)} be a partition of n observations into n(C) disjoint sets, i.e., |C| = n(C). Typical
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Bayesian models for clustering are based on posterior distributions of the form

π(C|T1, ..,Tn) ∝ π(C)
n(C)∏
h=1

[∫ ∏
i∈Ch

f(Ti|Θh)π(Θh)dΘh

]
= π(C)

n(C)∏
h=1

m({Ti : i ∈ Ch}), (1)

where f(Ti|Θh) denotes the likelihood for a tensor observation belonging to the h-th cluster

with the cluster-specific model parameter Θh and π(Θh) corresponds to the prior distribution

on the parameter Θh. The quantity m({Ti : i ∈ Ch}) =
∫ ∏

i∈Ch f(Ti|Θh)π(Θh)dΘh denotes

the marginal distribution of tensors belonging to the h-th cluster which is typically not

obtained in a closed form. Alternatively, the partition can be described through cluster

labels for n observations given by c = (c1, ..., cn)′, so that ci = h, if and only if i ∈ Ch, for

i = 1, ..., n. Irrespective of the representation, our interest only lies in the induced partition

C rather than the labels on the indicators c = (c1, ..., cn)′.

A natural choice for the likelihood f(Ti|Θh) appears to be a tensor normal distribution,

denoted as TN(Mh,Σ1,h, ...,ΣK,h), and is given by

f(Ti|Mh,Σ1,h, . . . ,ΣK,h) = (2π)−
p
2

{
K∏
k=1

|Σk,h|
− p

2pk

}
exp

(
−1

2

∥∥∥(Ti −Mh)× [Σ
− 1

2
1,h , . . . ,Σ

− 1
2

K,h]
∥∥∥2

F

)
,

(2)

where Mh is the mean/center of the TN distribution, and Σk,h is a pk × pk dimensional

positive definite matrix, also referred to as the covariance matrix for the k-th mode.

This article focuses on a scenario where the observed tensors in the sample are barely

distinguishable in terms of their means and the tensors belonging to different clusters only

differ in terms of their variability. Thus, the following crucial assumption is made hereon.

Assumption A: Different clusters of tensors only vary in terms of their covariance struc-

ture and not in their means. Thus, without loss of generality, Mh = 0 for all h = 1, .., n(C).

According to the likelihood specification in (2) and Assumption A, Θh corresponds to the

collection of covariance matrices for all modes, i.e., Θh = {Σ1,h, . . . ,ΣK,h}. While we de-

velop our approach based on Assumption A, simulation studies also demonstrate its good

performance when Assumption A is violated.

The distributional form of f(Ti|Θh), as given in (2), does not yield a closed form integral
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for the marginal distribution in (1). The common practice is to begin with the distribution

(Ti|Θh, ci = h) ∼ f(Ti|Θh) and develop a Gibbs sampler to draw posterior samples of c

along with Σk,h’s, for all k = 1, ..., K and h = 1, ..., n(C). However, when p1, ..., pK are

large and sample size n is moderate, Gibbs sampling of covariance matrices Σk,h’s results

in inferential inaccuracy related to clustering, as demonstrated in Section 4. Next section

develops an approximate Bayesian clustering algorithm that offers remedies to this challenge.

2.3 A Covariance-Based Bayesian Tensor Clustering Approach

To avoid complications due to model based clustering of high-dimensional tensor obser-

vations, we propose a two-step Bayesian clustering approach of tensors. In summary, our

approach first extracts important features of tensors to adequately estimate the covariance

structure along different modes, followed by model-based clustering of these features. To

elaborate on it, let A(Ti) be the set of extracted features from tensor Ti which will be re-

ferred to as transformed features (TF) hereon. The transformed features are carefully chosen

to estimate variability of the tensor normal distribution in each mode. Section 2.4 details

out a specific choice of such transformed features. While the exact distribution of A(Ti)

is determined by the tensor normal specification given in (2), we focus on a reasonable ap-

proximation of the distribution for A(Ti) in our goal to cluster these transformed features.

Let f̃(A(Ti)|Θ̃h, Θ̃a) be the approximated distribution of A(Ti) in the h-th cluster, with

Θ̃h as its h-th cluster-specific parameter and Θ̃a an auxiliary lower dimensional parameter

common across all clusters. Let π̃h(Θ̃h) and π̃a(Θ̃a) denote the prior distribution of Θ̃h and

Θ̃a, respectively, for h = 1, ..., H. We choose f̃(·) and π̃h(·) to ensure closed form marginal

distribution of m̃({A(Ti) : i ∈ Ch}|Θ̃a) =
∫ ∏

i∈Ch f̃(A(Ti)|Θ̃h, Θ̃a)π̃h(Θ̃h)dΘ̃h.

With closed form marginals for TFs in each cluster, the posterior distribution of clusters

and the auxiliary parameters is given by,

π(C, Θ̃a | A(T1), ...,A(Tn)) = π(C)π̃a(Θ̃a)

n(C)∏
h=1

m̃({A(Ti) : i ∈ Ch}|Θ̃a), (3)

where π(C) denotes the prior on partitions. In the interests of computational convenience, we

propose to adopt prior models on partitions for which posterior simulation methods are fully
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developed (Ferguson, 1973; Antoniak, 1974; Gopalan and Berry, 1998). More specifically,

with the posterior distribution of partitions given in (3), the computation proceeds through

a Chinese restaurant sampler described below (Lau and Green, 2007).

1. Initialize: Choose an initial partition C(0). Common options are either to set singleton

clusters or to put all observations in the same cluster.

2. Obtain s-th iterate of C: To obtain s-th iterate of the partition C(s) do:

(a) Initialize the Partition: Set C = C(s−1), and let C = {C1, . . . , Cn(C)}.

(b) Loop through every observation:

i. Remove observation A(Ti) from the partition: Remove i-the observation

from the partition C to obtain a new partition C−i = {C1,−i, ..., Cn(C−i),−i}.

ii. Assign observation i: Either assign the i-th observation to a new cluster, that

is update C to C = {C1,−i, ..., Cn(C−i),−i, {i}} with probability proportional to:

m̃(A(Ti)|Θ̃a)×
π({C1,−i, ..., Cn(C−i),−i, {i}})
π({C1,−i, ..., Cn(C−i),−i})

, (4)

or, assign the i-th observation to the existing j-th cluster Cj,−i, that is update

C to C = {C1,−i, ..., Cj,−i∪{i}, . . . , Cn(C−i),−i} with probability proportional to:

m̃({A(Ts) : s ∈ {{i} ∪ Cj,−i}}|Θ̃a)

m̃({A(Ts) : s ∈ Cj,−i}|Θ̃a)
×
π({C1,−i, ..., Cj,−i ∪ {i}, . . . , Cn(C−i),−i})

π({C1,−i, ..., Cn(C−i),−i})

(5)

(c) Set the partition C(s): After updating C, going through every observation, set

C(s) = C.

3. Sample the s-th iterate of Θ̃a: Draw s-th iterate of Θ̃a from its full conditional distri-

bution derived from (3).

Notably, steps (a)-(c) involve approximate marginal distribution of TFs which are available

in closed form by our assumption. In fact, the algorithm bypasses updating high dimensional
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parameters at any step, which leads to rapid mixing of the Markov Chain. Since the algo-

rithm uses transformed features A(Ti) of the tensor Ti, the clustering accuracy is naturally

dependent on the choice of these features. Next section describes a specific choice of TFs

which leads to desirable clustering performance for tensors.

2.4 Transformed Features and Their Distributions

This section discusses the specific choice of transformed features A(T) and the approx-

imate distribution f̃(A(T)|Θ̃h, Θ̃a) of the transformed features used in this article. Specif-

ically, we propose to work with the collection of transformed features given by A(Ti) =

{pk
p

Ti,(k)T
′
i,(k) : k = 1, ..., K}, where Ti,(k) is the k-th mode matrix of the tensor Ti. There-

fore, given a K-way tensor observation Ti of dimension p1×· · ·×pK (where p =
∏K

i=1 pi), we

extract a collection of K matrices of sizes p1 × p1, . . . , pK × pK , which will suitably capture

the covariance structure of the observed tensor, as described by the lemma below.

Lemma 2.1 Let Ti ∼ TN(0,Σ1, . . . ,ΣK) and A(Ti)
(k) = pk

p
Ti,(k)T

′
i,(k). Assume that for

all k = 1, ..., K, as p → ∞, we have (i) pk
p
→ 0 (ii) pk

p
tr(⊗k′ 6=kΣk′) → wk and (iii)

p2k
p2

∑
l,r{⊗k′ 6=kΣk′}l,r → 0, for all l, r = 1, ..., p/pk, where {⊗k′ 6=kΣk′}l,r denotes the (l, r)th

entry of the matrix ⊗k′ 6=kΣk′. (i)-(iii) together imply that {A(Ti)
(k)}l,r → {Σk}l,rwk, where

wk is a constant.

The result implies that under regularity conditions, as the tensor dimensions grow, the trans-

formed features converge to mode-specific covariance matrices upto a scale factor, recovering

their shapes and orientations. The proof of Lemma 2.1 is provided in the supplementary

material. Before discussing the implication of Lemma 2.1, some discussions on assumptions

(i)-(iii) is warranted. Assumption (i) is a mild one only guaranteeing growth of tensor along

every dimension. Broadly, the conditions (ii) and (iii) restrict the number of nonzero ele-

ments in the mode-specific covariance matrices generating the data, which turn out to be

crucial in dictating the clustering performance of the approach, as observed in Section 4. In

particular, when Σk is an identity matrix of dimension pk × pk, (ii) and (iii) are trivially

satisfied with wk = 1 for all k = 1, ..., K.

The lemma reveals an interesting aspect of the transformed features. Note that the

major inferential and computational challenges of clustering high-dimensional tensors using
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mixture models stems from estimating high dimensional covariance matrices for different

modes. In contrast, when sparsity of the true covariance matrices are restricted following

assumptions (ii) and (iii), higher tensor dimensions will guarantee accurate estimation of

mode-specific covariance matrices by the transformed features, which is conducive to our

approximate tensor clustering approach, as revealed in Lemma 2.1.

2.4.1 The Approximate TF Distribution and Prior On Parameters

Following the mixture of tensor normal specification for the tensors Ti as in (2), the trans-

formed features (TFs) A(Ti) follow a mixture distribution which does not allow straight-

forward posterior computation. We propose an approximation wherein we employ cluster-

specific normal means model on the upper triangular entries of A(Ti)
(k) in all clusters and

for all modes k = 1, ..., K. More specifically, the (l, r)-th entry of A(Ti)
(k) is modeled as

{A(Ti)
(k)}l,r

ind.∼ N(θ
(k)
l,r,h, σ

2), for i ∈ Ch, θ(k)
l,r,h ∼ N(θ0, σ

2/φ), l < r. (6)

(6) can be viewed as an approximation to the actual distribution of TFs under the mixture of

tensor normal specification of Ti, when tensor dimensions are large. In fact, when i ∈ Ch and

Ti ∼ TN(0,Σ1,h, ..,ΣK,h), {A(T)(k)}l,r is approximately distributed as normal by central

limit theorem as pk/p→ 0.

The specification of (6) leads to a closed form marginal distribution of A(Ti) in each

cluster conditional on the auxiliary parameters Θ̃a = (σ2, φ)′ by integrating out cluster

specific parameters Θ̃h = (θ
(k)
l,r,h : l < r)′. More specifically,

m̃
(
{{A(Ti)

(k)}l,r : i ∈ Ch}|φ, σ2
)

=
(
2πσ2

)−nh
2

[
φ

nh + φ

] 1
2

exp

{
− 1

2σ2

([∑
i∈Ch

(
{A(Ti)

(k)}l,r − {Ā(T)
(k)
Ch }l,r

)2
]

+ φ
(
{ ¯A(T)

(k)

Ch }l,r − θ0

)2
)}

,

(7)

where nh = |Ch| is the number of samples belonging to the h-th cluster Ch and {Ā(T)
(k)
Ch }l,r =

1
nh+φ

(∑
i∈Ch{A(Ti)

(k)}l,r + φθ0

)
. The marginal distribution of A(T1), ...,A(Tn) conditional
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on the auxiliary parameters σ2 and φ is of the form

m̃
(
A(T1), ...,A(Tn)|φ, σ2

)
=

n(C)∏
h=1

∏
i∈Ch

K∏
k=1

∏
1≤l<r≤pk

m̃
(
{{A(Ti)

(k)}l,r : i ∈ Ch}|φ, σ2
)
, (8)

where the form of m̃
(
{{A(Ti)

(k)}l,r : i ∈ Ch}|φ, σ2
)

is obtained from (7).

Following Lau and Green (2007), the prior distribution on the partition C under such a

specification assumes the form,

π(C|φ) = φn(C)+1 Γ(φ)

Γ(n+ φ)

n(C)∏
h=1

Γ(nh), (9)

with the prior being dependent on the auxiliary parameter φ. Following the Chinese Restau-

rant analogy, (9) implies that the probability of assigning a new customer to a new table is

proportional to φ a priori. The prior specification is completed by setting an inverse-gamma

prior on σ2, σ2 ∼ IG(aσ, bσ) and a discrete uniform prior on φ taking values φ1, ..., φF each

with probability 1/F .

3 Posterior Computation

With likelihood and prior distributions specified as in Section 2.4.1, the full posterior

distribution of partitions and auxiliary variables is given by,

p(C, φ, σ2|A(T1), ...,A(Tn)) ∝ m̃
(
A(T1), ...,A(Tn)|φ, σ2

)
× φn(C)+1 Γ(φ)

Γ(n+ φ)

n(C)∏
h=1

Γ(nh)

× βασσ
Γ(ασ)

(σ2)−ασ−1 exp

(
−βσ
σ2

)
.

The posterior computation proceeds following the general algorithm described in Section 2.3

with simplifications due to the prior structure. Specifically, the probability of assigning the

i-th observation to a new cluster, described in (4), is proportional to

m̃(A(Ti)|φ, σ2)× φ.
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Similarly, the probability of being assigned to the existing j-th cluster Cj,−i, described in (5),

becomes proportional to

m̃ ({A(Ts) : s ∈ {i} ∪ Cj,−i}|φ, σ2)

m̃ ({A(Ts) : s ∈ Cj,−i}|φ, σ2)
× |Cj,−i|.

Thus Chinese restaurant process assigns an observation into an existing cluster or to a new

cluster depending on the size of the existing clusters, parameter φ and similarity of the

customers (observations) already in a cluster with the new observation.

Finally, the full conditional distribution to sample σ2 in step 3 of the algorithm is given

by IG(aσ|−, bσ|−) distribution with the values of aσ|− and bσ|− are given by

aσ|− = aσ +

n
K∑
k=1

pk(pk − 1)

2

bσ|− = bσ +

n(C)∑
h=1

K∑
k=1

∑
1≤l<r≤pk

[∑
i∈Ch

(
{A(Ti)

(k)}l,r − {Ā(T)
(k)
Ch }l,r

)2

+ φ
(
{ ¯A(T)

(k)

Ch }l,r − θ0

)2
]

2
.

φ is sampled in each iteration from a discrete uniform distribution taking values φf with

probability proportional to m̃ (A(T1), ...,A(Tn)|φf , σ2) × φ
n(C)+1
f

Γ(φf )

Γ(n+φf )
, for f = 1, ..., F .

We fix F = 20 throughout our empirical investigation.

4 Numerical Illustration

This section studies the clustering performance, i.e., estimation of true clusters and uncer-

tainty in clustering, of our proposed Bayesian Tensor Clustering (BTC) approach vis-a-vis

its competitors. We begin by showing performances of competitors when the true data

generating distribution of tensors does not allow any difference in the mean level between

clusters, i.e., the data generating distribution satisfies Assumption A. In Section 4.4 we

show performance of the competitors when this assumption is violated.
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4.1 Simulated Data Generation

We simulate n = 100 tensors T1,...,Tn from a finite mixture of tensor normal models

with H∗ mixing components given by

Ti ∼
H∗∑
h=1

πhTN(0,Σ1,h, ...,ΣK,h),
H∗∑
h=1

πh = 1. (10)

The data generation scheme ensures that the tensors in different cluster differ only in their

variability, satisfying Assumption A. Further, each simulated tensor is assumed to have

K = 3 modes of dimensions p1 = 10, p2 = 20 and p3 = 30. While our approach is scalable for

a much bigger tensor size, we kept the tensor dimensions moderate in simulations to facilitate

comparison with the full Bayesian model-based clustering approach. The probability of

inclusion in every mixture component is set to be identical πh = 1/H∗, resulting in clusters

of similar size. The tensor mode-specific covariance matrices Σk,h are generated as sparse to

aid accurate estimation of them following Lemma 2.1. More specifically, each mode-specific

covariance matrix of dimension pk × pk, k = 1, ..., K, is generated following the strategy

described below.

1. A symmetric matrix Ek is constructed by setting its non-diagonal entries equal to 1

with probability α, and 0 with probability (1− α). All diagonal elements are set to 0.

2. Construct Dk = Ek/2+δI with δ chosen so that Dk has a condition number of pk. The

sparsity of Dk is determined by α and we refer to (1−α) as the “sparsity parameter.”

3. The matrix Σk,h is obtained by sampling from a G-Wishart distribution with degrees

of freedom equal to pk + 3 and scale matrix equal to Dk.

We consider seven simulation cases by varying the number of clusters H∗ and the sparsity

parameter (1 − α) of covariance matrices, as shown in Table 1. The simulation results will

develop understanding of how the interplay between number of clusters and the sparsity in

the covariance matrices affects performance of the competitors.
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4.2 Competitors and Metrics of Evaluation

Following the idea proposed in Rousseau and Mengersen (2011), we choose the number of

mixture components H so that there are unoccupied cells. If H is chosen to be too small and

none of the clusters is unoccupied, the analysis should be repeated for larger H. We observed

H = 20 to be sufficient for the empirical investigation. As a competitor to BTC, we employ

a static version of the Dynamic Tensor Clustering algorithm (DTC) (Sun and Li, 2019b)

and Doubly-Enhanced EM algorithm (DEEM) proposed for tensor mixture models (Mai

et al., 2021b) using only a modified enhanced M-Step. While our Bayesian approach allows

simultaneous model-based determination of cluster number and composition, frequentist

clustering techniques fix the number of clusters before implementing the clustering. In the

simulation studies, we implement both DTC and DEEM by fixing the number of clusters at

the truth H∗. Although this leads to somewhat unfair comparison for BTC, it is nonetheless

instructive to investigate performance of BTC when the simulation design offers advantage

to its competitors. Finally, we employ (10) after fixing the true number of clusters and

the true values of Σk,h’s for each tensor normal mixture component. This competitor is

referred to as the Oracle Bayesian tensor clustering approach, where the only parameters

left to estimate are the weights of the mixture components. Oracle is naturally expected to

perform better than all the approaches and is used to assess the loss in performance due to

various approximations in our approach. Notably, Oracle competitor is only available for

simulation studies.

To assess inference on clusters from BTC, we investigate (i) the point estimate of cluster

membership indicators denoted by ĉ, and (ii) a heatmap of the posterior probability of any

two samples belonging to the same cluster, or the co-clustering matrix G with the (i, j)th

entry Gi,j = P (ci = cj|Data) (which provides a measure of the uncertainty associated with

the clustering). An empirical estimate of the co-clustering matrix G can be obtained from the

post burn-in MCMC samples of the cluster membership indices c. With the information on

true cluster configuration in simulation studies, we evaluate the quality of point estimate of

clustering using the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) of the posterior

cluster configurations with respect to the known cluster configuration. ARI ranges between
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Table 1: Adjusted Rand Index (ARI) for competitors (BTC, DTC, DEEM, Oracle) when
tensor-valued observations are simulated following (10). We consider different simulation
configurations by changing the true number of clusters (H∗) and true sparsity of mode-
specific covariance matrices (1− α).

Cases 1− α H∗ BTC Oracle DEEM DTC

1 0.9 3 0.877 1.000 0.089 0.002
2 0.9 4 0.934 1.000 0.035 0.002
3 0.8 3 0.958 1.000 0.101 0.000
4 0.8 4 0.984 1.000 0.044 0.002
5 0.7 3 0.992 1.000 0.113 -0.001
6 0.7 4 0.996 1.000 0.061 0.001
7 0.6 4 0.999 1.000 0.052 0.001

−1 and 1, with larger values indicating more agreement between cluster configurations.

Notably, ARI is only available for simulation studies when the true clusters are known.

4.3 Simulation Results

Table 1 provide insights into the point estimates of the cluster structure by displaying the

discrepancy between the true and the estimated clusters. BTC shows excellent clustering

accuracy under all cases with ARI being close to 1. DEEM often clubs multiple clusters

to a single cluster which naturally yields an under-estimation in the number of clusters

and consequently, a drop in ARI values. Table 1 shows that the clustering accuracy of

DEEM plummets when true number of clusters in the data increases, though sparsity does

not seem to have any major impact on the clustering performance of DEEM. DTC performs

clustering based on the low-rank decomposition of the mean structure of each tensor which is

not conducive to capturing the cluster patterns in the present scenario, since data generating

clusters mainly differ in terms of their variability. In fact, the tensors simulated from (10) are

not likely to be approximated well by a low-rank decomposition, which presumably leads to

the less satisfactory performance of DTC. In contrast, the ”gold standard” Oracle is provided

with the true covariance structure of the tensors as well as the true number of clusters; hence

it identifies true clusters accurately in every simulation.

The uncertainty in clustering is displayed using the heat maps of posterior probabilities
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Table 2: Adjusted Rand Index (ARI) for competitors (BTC, DTC, DEEM, Oracle) when
tensor-valued observations are simulated following (11) and ∆ = 0.3. We consider different
simulation configurations by changing the true number of clusters (H∗) and true sparsity of
mode-specific covariance matrices (1− α).

Cases 1− α H∗ BTC Oracle DEEM DTC

1 0.9 3 0.878 1.000 0.124 0.007
2 0.9 4 0.998 1.000 0.157 0.010
3 0.8 3 0.961 1.000 0.114 0.005
4 0.8 4 0.979 1.000 0.081 0.005
5 0.7 3 0.991 1.000 0.132 0.008
6 0.7 4 0.998 1.000 0.061 0.002
7 0.6 4 0.920 1.000 0.062 0.004

of pairs of subjects belonging to the same cluster, or the co-clustering matrix. Figures 1

and 2 show co-clustering matrices for all competitors (except DTC) under all the simulation

scenarios. Since DTC only offers point estimate of clusters, co-clustering matrix correspond-

ing to DTC is not available. To facilitate visualization in Figures 1 and 2, subjects are

ordered according to their true cluster configurations in the heatmap. Under all cases, BTC

successfully recovers the true cluster structure, with little uncertainty associated with the

estimator. As stated before, DEEM underestimates the number of clusters, with a very little

uncertainty in the clusters. Oracle also recovers true clusters with very little uncertainty.

Importantly, unlike existing model-based tensor clustering approaches, high dimensionality

of tensors is a blessing rather than a curse for BTC as, with high dimensions, the transformed

features can more accurately estimate the true mode-specific covariance matrices.

4.4 Clustering Performance under Mis-specification

While Sections 4.1-4.3 show excellent performance of BTC when Assumption A is

satisfied and Lemma 2.1 holds, this section evaluates BTC when the data generation scheme

violates Assumption A. To evaluate the performance of BTC under such mis-specification,

when the no difference in means between clusters is violated, we simulate tensor-valued

17



observations from

Ti ∼
H∗∑
h=1

πhTN(Mh,Σ1,h, ...,ΣK,h),
H∗∑
h=1

πh = 1, (11)

with Σ1,h, ...,ΣK,h constructed using steps 1-3, outlined in Section 4.1. 80% entries of the

cluster-specific mean entries M 1, ...,MH∗ are set to 0, while the rest of the entries are

simulated to ensure ||Mh −Mh′ ||F/p = ∆ for any 1 ≤ h 6= h′ ≤ H∗. Two simulation

settings are considered with ∆ = 0.3 and ∆ = 2, which correspond to “small” and “big”

difference between cluster means. For both ∆ = 0.3 and ∆ = 2, we consider seven simulation

cases by varying H∗ and (1− α), as shown in Table 2 and Table 3, respectively.

Table 2 demonstrates superior performance of BTC and Oracle, while DEEM and DTC

struggle to identify the true clusters. As ∆ increases, the performance edge of BTC and

Oracle over their competitors is maintained (see Table 3). However, with higher values

of ∆, clustering performance of DTC improves substantially. This is presumably due to

the fact that the mean structure of the tensor-valued data plays a more significant role in

clustering for larger values of ∆, which is conducive to the clustering architecture of DTC.

The performance of DEEM deteriorates substantially (see Table 3) as H∗ increases, though

sparsity does not seem to play an important role in the performance of DEEM. Overall, The

simulated data reveals excellent performance of BTC when the true clusters of observations

differ substantially in terms of their variability, rather than only in their mean structure.

5 Application to the ‘Eyes-Open’ Paradigm Data

We illustrate performance of BTC using a dataset on EEG signals for 58 children aged

25 to 126 months with autism spectrum disorder (ASD). For each subject, EEG signals were

sampled at 500 HZ for two minutes from a 128-channel HydroCel Geodesic sensor Net. EEG

recordings were collected during an ‘eyes-open’ paradigm in which bubbles were presented

on a computer screen in a sound-attenuated room to ASD children at rest. More details

related to pre-processing and data acquisition can be found at Scheffler et al. (2019). The

EEG data for each subject is reduced via model-based interpolation to a standard 10 − 20

system 25 electrode montage, as described in Perrin et al. (1989), resulting in 25 electrodes
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Table 3: Adjusted Rand Index (ARI) for competitors (BTC, DTC, DEEM, Oracle) when
tensor-valued observations are simulated following (11) and with ∆ = 2. We consider differ-
ent simulation configurations by changing the true number of clusters (H∗) and true sparsity
of mode-specific covariance matrices (1− α).

Cases 1− α H∗ BTC Oracle DEEM DTC

1 0.9 3 0.981 1.000 0.164 0.870
2 0.9 4 0.996 1.000 0.060 0.734
3 0.8 3 0.991 1.000 0.203 0.883
4 0.8 4 0.996 1.000 0.060 0.734
5 0.7 3 0.998 1.000 0.288 0.863
6 0.7 4 1.000 1.000 0.088 0.745
7 0.6 4 1.000 1.000 0.149 0.868

with continuous EEG signal. We obtained spectral density estimates on the first 38 seconds

of artifact free EEG data for each electrode using the Fast Fourier Transform described in

Welch (1967) with two second Hanning windows and 50 percent overlap. In our analysis, we

consider only the alpha spectral band (Ω = (6Hz, 14Hz)) which due to the sampling scheme

has a frequency resolution of 0.25Hz resulting in 33 grid points. Finally, we normalize this

band to a unit area to better facilitate comparisons across electrodes and subjects. As a

result we end up with 58 two-way tensors (or matrices) of dimensions 25× 33. As discussed

in Section 1, prior evidence suggests patients with ASD can be clustered based on patterns

of EEG spectral covariation. Furthermore, previous findings on this data (Scheffler et al.,

2019) reveal a common alpha spectral mean structure across development in ASD patients

2-12 years old but substantial subject-level heterogeneity in terms of alpha spectral dynamics

across the scalp. Thus, in this application, it is of interest to determine how ASD patients

cluster in terms of patterns of spectral covariation across development. Potential subgroups

with cluster-specific covariances will be investigated for links to observed characteristics such

as verbal and non-verbal intelligence quotients (VIQ and NVIQ, respectively).

While the prior scientific knowledge on the dataset indicates similar mean structure

among subjects, it is instructive to further explore for more empirical evidence before we

proceed to clustering with BTC. While it is hard to verify such an assumption in high

dimensional objects, an exploratory analysis is presented to investigate this issue.
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Figure 1: Heatmap of the posterior probability of any two samples belonging to the same
cluster (co-clustering matrix) for the cases with H∗ = 4. The tensor-valued observations are
simulated following (10).
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As part of our exploratory analysis, we vectorize each 25 × 33 tensor to a long vector

of 825 co-ordinates and perform k-means clustering, with k = 2, 3, 4, 5, separately on each

of these co-ordinates. If several of the coordinates show similar clustering pattern, then

one might intuitively expect a meaningful difference in the cluster means. We compute the

similarity of coordinate clustering by computing the ARI of every coordinate cluster against

every other coordinate cluster, resulting in
(

825
2

)
ARI values. Table 4 presents the 5th, 25th,

50th, 75th and 95th percentile values for ARI corresponding to k = 2, 3, 4, 5. The results
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Figure 2: Heatmap of the posterior probability of any two samples belonging to the same
cluster (co-clustering matrix) for the cases with H∗ = 3. The tensor-valued observations are
simulated following (10).
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demonstrate the distribution of the ARI is concentrated around 0 for all choices of k, offering

no evidence that a significant number of coordinates results in similar clusters. Choice of

higher values of k leads to even lower degree of concordance between clustering of samples

along different dimensions.

With the preliminary exploration suggesting no difference in clusters in terms of mean,

we proceed to identify clusters with differences in their variability using BTC. BTC shows

rapid convergence and is run for 400 iterations, with inference is based on the last 300 post
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Table 4: Summary statistics for the similarity of the coordinate clustering computed by the
Adjusted Rand Index (ARI).

k-Means 5th 25th Median 75th 95th
percentile percentile percentile percentile

k = 2 -0.06940 -0.023240 -0.003562 0.06126 0.2623
k = 3 -0.02938 -0.010196 0.015847 0.06482 0.1857
k = 4 -0.02837 -0.005866 0.019221 0.05750 0.1400
k = 5 -0.02692 -0.003716 0.018981 0.05024 0.1162

burn-in iterates. The posterior distribution of the number of clusters in Figure 3b shows a

clear mode at 3, indicating three clusters among subjects. The co-clustering matrix shown in

Figure 3a suggests four clusters with a high degree of uncertainty in the cluster membership

for elements in the first two clusters. Indeed, the result indicates that the elements in the

second cluster are often included as part of the first cluster in post burn-in iterates, which

is consistent with the posterior mode of the number of clusters being identified as three. To

demonstrate the stability of clusters in the post burn-in iterations, we plot (Figure 3c) ARI

of clusters in any two successive post burn-in iterations. The plot indicates that most of the

partitions in successive iterations are identical or have high overlaps. The nominal degree of

fluctuations in the ARI stems mainly from the fact that elements in the second cluster are

entirely part of the first cluster in many of the iterations.

We examine the resulting mode-specific correlation structures (electrode and frequency,

respectively) for each of the clusters. Recall that the transformed features estimate mode-

specific covariance matrices up to a constant following Lemma 2.1. Thus, we construct

estimates of mode-specific correlation matrices from transformed features, which are com-

parable across clusters. We present the resulting correlation matrices for the most frequent

clustering assignment which accounts for 35.33% of the post burn-in samples. Figure 4

displays the (a-c) electrode and (d-f) frequency mode-specific correlations for the most fre-

quent clusters which show distinct patterns of variation that allow for interpretation. In the

electrode dimension, clusters 1 shows stronger overall positive correlations among electrode

pairs, followed by cluster 2 and 3, respectively. In the frequency dimension, clusters 1 and 2
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display positive correlations among alpha oscillatory dynamics at higher frequencies (11-14

Hz) while cluster 3 shows positive correlations over a wider frequency range (8-14 Hz). Over-

all, the electrode and frequency mode-specific correlations for clusters 1 and 2 show similar

patterns of correlation, distinct in magnitude but not direction, while cluster 3 is distinct

from clusters 1 and 2 in both the magnitude and direction for the frequency mode-specific

correlations. However, cluster 3 displays similar positive electrode mode-specific correlations

to clusters 1 and 2.

While the clusters are identified by clustering on the resting state EEG data, it is also of

interest to determine if cluster membership is associated with non-EEG clinical covariates.

To this end, we investigate the three clusters identified by BTC by performing separate one-

way analysis of variance (ANOVA) for the two covariates measured on the subjects, VIQ, and

NVIQ, to test the null hypothesis that the cluster means are equal. The three clusters var-

ied significantly with respect to NVIQ (p-value = 0.021) and revealed borderline significance

with respect to VIQ (p-value = 0.065). Ultimately, an unsupervised tensor clustering anal-

ysis is inherently exploratory, and the identified clusters form the basis of identifying ASD

phenotypes which may not be captured by the two non-EEG clinical covariates measured.

Figure 3: Figures (a) and (b) show co-clustering matrix and histogram for the number of
identified clusters by BTC, respectively. Figure (c) presents ARI between any partitions for
any two successive iterations for the post burn-in iterates.
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Since the size of the tensors in the EEG data application is smaller than the simulation

studies, they allow fitting a full Bayesian mixture model analysis of the data using tensor
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Figure 4: The (a-c) electrode and (d-f) frequency mode-specific correlations for the most
frequent cluster assignments (modal clustering).
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normal distributions with zero mean as mixture components. Figure 5 presents co-clustering

matrices for the full Bayesian implementation for a mixture of H = 3, 4, 5 tensor normal

distributions. The figure demonstrates unsatisfactory performance of the full Bayesian clus-

tering approach, identifying only one cluster. This somewhat confirms the underestimation

in the number of clusters demonstrated by DEEM in the simulation studies, given that

DEEM is a frequentist analogue to the Bayesian mixture model. The Bayesian mixture

modeling approach should ideally offer better clustering performance than DTC, since DTC

clusters tensors based on the difference in their centers. As the true model parameters are

not available for the real data, the results from Oracle are not available.

24



Figure 5: Cluster structure for EEG data on 58 ASD children using a full Bayesian mixture
of tensor normals.
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6 Conclusion

This article presents a two-step unsupervised clustering technique for tensor-valued ob-

servations when clusters show difference mainly in their covariances, rather than in their

means. Our proposed approach identifies true clusters with accurate uncertainty in mis-

classification, when tensor dimensions are large and sample size is moderate. Our approach

aids in meaningful identification of subgroups in the ASD patients based on their EEG

recordings.

An immediate future work is to extend our approach in clustering large time-varying

undirected networks (represented by symmetric matrices) which frequently occur in econo-

metric applications. The methodology developed in this article does not find straightforward

extension in such a scenario since symmetric restriction in the undirected network-matrix re-

quires modification in our proposed framework. We are currently developing novel strategies

to solve this problem.
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