3 research outputs found

    Highly charged 180 degree head-to-head domain walls in lead titanate

    Get PDF
    Charged domain walls (DWs) in ferroelectric materials are an area of intense research. Microscale strain has been identified as a method of inducing arrays of twin walls to meet at right angles, forming needlepoint domains which exhibit novel material properties. Atomic scale characterisation of the features exhibiting these exciting behaviours was inaccessible with the piezoresponse force microscopy resolution of previous work. Here we use aberration corrected scanning transmission electron microscopy to observe short, stepped, highly charged DWs at the tip of the needle points in ferroelectric PbTiO3. Reverse Ti4+ shift polarisation mapping confirms the head-to-head polarisation in adjacent domains. Strain mapping reveals large deviations from the bulk and a wider DW with a high Pb2+ vacancy concentration. The extra screening charge is found to stabilise the DW perpendicular to the opposing polarisation vectors and thus constitutes the most highly charged DW possible in PbTiO3. This feature at the needle point junction is a 5 nm Ă— 2 nm channel running through the sample and is likely to have useful conducting properties. We envisage that similar junctions can be formed in other ferro elastic materials and yield exciting phenomena for future researc

    Ferroelectric domain wall memristor

    Get PDF
    A domain wall-enabled memristor is created, in thin film lithium niobate capacitors, which shows up to twelve orders of magnitude variation in resistance. Such dramatic changes are caused by the injection of strongly inclined conducting ferroelectric domain walls, which provide conduits for current flow between electrodes. Varying the magnitude of the applied electric-field pulse, used to induce switching, alters the extent to which polarization reversal occurs; this systematically changes the density of the injected conducting domain walls in the ferroelectric layer and hence the resistivity of the capacitor structure as a whole. Hundreds of distinct conductance states can be produced, with current maxima achieved around the coercive voltage, where domain wall density is greatest, and minima associated with the almost fully switched ferroelectric (few domain walls). Significantly, this “domain wall memristor” demonstrates a plasticity effect: when a succession of voltage pulses of constant magnitude is applied, the resistance changes. Resistance plasticity opens the way for the domain wall memristor to be considered for artificial synapse applications in neuromorphic circuit

    Anomalous motion of charged domain walls and associated negative capacitance in copper–chlorine boracite

    Get PDF
    During switching, the microstructure of a ferroelectric normally adapts to align internal dipoles with external electric fields. Favorably oriented dipolar regions (domains) grow at the expense of those in unfavorable orientations and this is manifested in a predictable field-induced motion of the walls that separate one domain from the next. Here, the discovery that specific charged 90°domain walls in copper–chlorine boracite move in the opposite direction to that expected, increasing the size of the domain in which polarization is anti-aligned with the applied field, is reported. Polarization–field (P–E) hysteresis loops, inferred from optical imaging, show negative gradients and on-transient negative capacitance, throughout the P–E cycle. Switching currents (generated by the relative motion between domain walls and sensing electrodes) confirm this, insofar as their signs are opposite to those expected conventionally. For any given bias, the integrated switching charge due to this nomalous wall motion is directly proportional to time, indicating that the magnitude of the negative capacitance component should be inversely related to frequency. This passes Jonscher’s test for the misinterpretation of positive inductance and gives confidence that field-induced motion of these specific charged domain walls generates a measurable negative capacitance contribu tion to the overall dielectric respons
    corecore