36 research outputs found

    Les représentations de langage dans les algorithmes d'apprentissage profonds et le cerveau

    No full text
    Recent deep language models -- like GPT-3 and ChatGPT -- are capable to produce text that closely resembles that of humans. Such similarity raises questions about how the brain and deep models process language, the mechanisms they use, and the internal representations they construct. In this thesis, I compare the internal representations of the brain and deep language models, with the goal of identifying their similarities and differences. To this aim, I analyze functional resonance imaging (fMRI) and magnetoencephalography (MEG) recordings of participants listening to and reading sentences, and compare them to the activations of thousands of language algorithms corresponding to these same sentences.Our results first highlight high-level similarities between the internal representations of the brain and deep language models. We find that deep nets' activations significantly predict brain activity across subjects for different cohorts (>500 participants), recording modalities (MEG and fMRI), stimulus types (isolated words, sentences, and natural stories), stimulus modalities (auditory and visual presentation), languages (Dutch, English and French), and deep language models. This alignment is maximal in brain regions repeatedly associated with language, for the best-performing algorithms and for participants who best understand the stories. Critically, we evidence a similar processing hierarchy between the two systems. The first layers of the algorithms align with low-level processing regions in the brain, such as auditory areas and the temporal lobe, while the deep layers align with regions associated with higher-level processing, such fronto-parietal areas.We then show how such similarities can be leveraged to build better predictive models of brain activity and better decompose several linguistic processes in the brain, such as syntax and semantics. Finally, we explore the differences between deep language models and the brain's activations. We find that the brain predicts distant and hierarchical representations, unlike current language models that are mostly trained to make short-term and word-level predictions. Overall, modern algorithms are still far from processing language in the same way that humans do. However, the direct links between their inner workings and that of the brain provide an promising platform for better understanding both systems, and pave the way for building better algorithms inspired by the human brain.Algorithmes et cerveau, bien que de nature extrêmement différentes, sont deux systèmes capables d'effectuer des tâches de langage complexes. En particulier, de récentes avancées en intelligence artificielle ont permis l'émergence d'algorithmes produisant des textes de qualité remarquablement similaire à ceux des humains (ChatGPT, GPT-3). De telles similarités interrogent sur la façon dont le cerveau et ces algorithmes traitent le langage, les mécanismes qu'ils utilisent et les représentations internes qu'ils construisent. Ma thèse consiste à comparer les représentations internes de ces deux systèmes, d'identifier leurs similitudes et leurs différences.Pour ce faire, nous analysons les enregistrements par imagerie fonctionnelle (fMRI) et magnéto-encéphalographie (MEG) de participants écoutant et lisant des histoires, et les comparons aux activations de milliers d'algorithmes de langage correspondant à ces mêmes histoires.Nos résultats mettent d'abord en évidence des similarités de haut niveau entre les représentations internes du cerveau et des modèles de langage. Dans une première partie, nous montrons que les activations des réseaux profonds prédisent linéairement l'activité cérébrale de sujets chez différents groupes (>500 participants), pour différentes modalités d'enregistrement (MEG et fMRI), modalités de stimulus (présentation auditive et visuelle), types de stimulus (mots isolés, phrases et histoires naturelles), langues (néerlandais et anglais) et modèles de langage. Cette correspondance est maximale dans les régions cérébrales souvent associées au langage, pour les algorithmes les plus performants et pour les participants qui comprennent le mieux les histoires. De plus, nous mettons en évidence une hiérarchie de traitement similaire entre les deux systèmes. Les premières couches des algorithmes sont alignées sur les régions de traitement de bas niveau dans le cerveau, telles que les zones auditives et le lobe temporal, tandis que les couches profondes sont alignées sur des régions associées à un traitement de plus haut niveau, notamment les zones fronto-pariétales.Nous montrons ensuite, dans une seconde partie, comment de telles similarités peuvent aider à construire de meilleurs modèles prédictifs de l'activité cérébrale, et à décomposer plus finement dans le cerveau différents processus linguistiques tels que la syntaxe et la sémantique.Enfin, dans une troisième partie, nous explorons les différences entre cerveau et algorithmes. Nous montrons que le cerveau prédit des représentations distantes et hiérarchiques, contrairement aux modèles de langage actuels qui sont principalement entraînés à faire des prédictions à court terme et au niveau du mot. Dans l'ensemble, les algorithmes modernes sont encore loin de traiter le langage de la même manière que les humains le font. Cependant, les liens directs entre leur fonctionnement interne et celui du cerveau fournissent une plateforme prometteuse pour mieux comprendre les deux systèmes, et ouvre la voie à la construction d'algorithmes plus similaires au cerveau

    Les représentations de langage dans les algorithmes d'apprentissage profonds et le cerveau

    No full text
    Recent deep language models -- like GPT-3 and ChatGPT -- are capable to produce text that closely resembles that of humans. Such similarity raises questions about how the brain and deep models process language, the mechanisms they use, and the internal representations they construct. In this thesis, I compare the internal representations of the brain and deep language models, with the goal of identifying their similarities and differences. To this aim, I analyze functional resonance imaging (fMRI) and magnetoencephalography (MEG) recordings of participants listening to and reading sentences, and compare them to the activations of thousands of language algorithms corresponding to these same sentences.Our results first highlight high-level similarities between the internal representations of the brain and deep language models. We find that deep nets' activations significantly predict brain activity across subjects for different cohorts (>500 participants), recording modalities (MEG and fMRI), stimulus types (isolated words, sentences, and natural stories), stimulus modalities (auditory and visual presentation), languages (Dutch, English and French), and deep language models. This alignment is maximal in brain regions repeatedly associated with language, for the best-performing algorithms and for participants who best understand the stories. Critically, we evidence a similar processing hierarchy between the two systems. The first layers of the algorithms align with low-level processing regions in the brain, such as auditory areas and the temporal lobe, while the deep layers align with regions associated with higher-level processing, such fronto-parietal areas.We then show how such similarities can be leveraged to build better predictive models of brain activity and better decompose several linguistic processes in the brain, such as syntax and semantics. Finally, we explore the differences between deep language models and the brain's activations. We find that the brain predicts distant and hierarchical representations, unlike current language models that are mostly trained to make short-term and word-level predictions. Overall, modern algorithms are still far from processing language in the same way that humans do. However, the direct links between their inner workings and that of the brain provide an promising platform for better understanding both systems, and pave the way for building better algorithms inspired by the human brain.Algorithmes et cerveau, bien que de nature extrêmement différentes, sont deux systèmes capables d'effectuer des tâches de langage complexes. En particulier, de récentes avancées en intelligence artificielle ont permis l'émergence d'algorithmes produisant des textes de qualité remarquablement similaire à ceux des humains (ChatGPT, GPT-3). De telles similarités interrogent sur la façon dont le cerveau et ces algorithmes traitent le langage, les mécanismes qu'ils utilisent et les représentations internes qu'ils construisent. Ma thèse consiste à comparer les représentations internes de ces deux systèmes, d'identifier leurs similitudes et leurs différences.Pour ce faire, nous analysons les enregistrements par imagerie fonctionnelle (fMRI) et magnéto-encéphalographie (MEG) de participants écoutant et lisant des histoires, et les comparons aux activations de milliers d'algorithmes de langage correspondant à ces mêmes histoires.Nos résultats mettent d'abord en évidence des similarités de haut niveau entre les représentations internes du cerveau et des modèles de langage. Dans une première partie, nous montrons que les activations des réseaux profonds prédisent linéairement l'activité cérébrale de sujets chez différents groupes (>500 participants), pour différentes modalités d'enregistrement (MEG et fMRI), modalités de stimulus (présentation auditive et visuelle), types de stimulus (mots isolés, phrases et histoires naturelles), langues (néerlandais et anglais) et modèles de langage. Cette correspondance est maximale dans les régions cérébrales souvent associées au langage, pour les algorithmes les plus performants et pour les participants qui comprennent le mieux les histoires. De plus, nous mettons en évidence une hiérarchie de traitement similaire entre les deux systèmes. Les premières couches des algorithmes sont alignées sur les régions de traitement de bas niveau dans le cerveau, telles que les zones auditives et le lobe temporal, tandis que les couches profondes sont alignées sur des régions associées à un traitement de plus haut niveau, notamment les zones fronto-pariétales.Nous montrons ensuite, dans une seconde partie, comment de telles similarités peuvent aider à construire de meilleurs modèles prédictifs de l'activité cérébrale, et à décomposer plus finement dans le cerveau différents processus linguistiques tels que la syntaxe et la sémantique.Enfin, dans une troisième partie, nous explorons les différences entre cerveau et algorithmes. Nous montrons que le cerveau prédit des représentations distantes et hiérarchiques, contrairement aux modèles de langage actuels qui sont principalement entraînés à faire des prédictions à court terme et au niveau du mot. Dans l'ensemble, les algorithmes modernes sont encore loin de traiter le langage de la même manière que les humains le font. Cependant, les liens directs entre leur fonctionnement interne et celui du cerveau fournissent une plateforme prometteuse pour mieux comprendre les deux systèmes, et ouvre la voie à la construction d'algorithmes plus similaires au cerveau

    Les représentations de langage dans les algorithmes d'apprentissage profonds et le cerveau

    No full text
    Recent deep language models -- like GPT-3 and ChatGPT -- are capable to produce text that closely resembles that of humans. Such similarity raises questions about how the brain and deep models process language, the mechanisms they use, and the internal representations they construct. In this thesis, I compare the internal representations of the brain and deep language models, with the goal of identifying their similarities and differences. To this aim, I analyze functional resonance imaging (fMRI) and magnetoencephalography (MEG) recordings of participants listening to and reading sentences, and compare them to the activations of thousands of language algorithms corresponding to these same sentences.Our results first highlight high-level similarities between the internal representations of the brain and deep language models. We find that deep nets' activations significantly predict brain activity across subjects for different cohorts (>500 participants), recording modalities (MEG and fMRI), stimulus types (isolated words, sentences, and natural stories), stimulus modalities (auditory and visual presentation), languages (Dutch, English and French), and deep language models. This alignment is maximal in brain regions repeatedly associated with language, for the best-performing algorithms and for participants who best understand the stories. Critically, we evidence a similar processing hierarchy between the two systems. The first layers of the algorithms align with low-level processing regions in the brain, such as auditory areas and the temporal lobe, while the deep layers align with regions associated with higher-level processing, such fronto-parietal areas.We then show how such similarities can be leveraged to build better predictive models of brain activity and better decompose several linguistic processes in the brain, such as syntax and semantics. Finally, we explore the differences between deep language models and the brain's activations. We find that the brain predicts distant and hierarchical representations, unlike current language models that are mostly trained to make short-term and word-level predictions. Overall, modern algorithms are still far from processing language in the same way that humans do. However, the direct links between their inner workings and that of the brain provide an promising platform for better understanding both systems, and pave the way for building better algorithms inspired by the human brain.Algorithmes et cerveau, bien que de nature extrêmement différentes, sont deux systèmes capables d'effectuer des tâches de langage complexes. En particulier, de récentes avancées en intelligence artificielle ont permis l'émergence d'algorithmes produisant des textes de qualité remarquablement similaire à ceux des humains (ChatGPT, GPT-3). De telles similarités interrogent sur la façon dont le cerveau et ces algorithmes traitent le langage, les mécanismes qu'ils utilisent et les représentations internes qu'ils construisent. Ma thèse consiste à comparer les représentations internes de ces deux systèmes, d'identifier leurs similitudes et leurs différences.Pour ce faire, nous analysons les enregistrements par imagerie fonctionnelle (fMRI) et magnéto-encéphalographie (MEG) de participants écoutant et lisant des histoires, et les comparons aux activations de milliers d'algorithmes de langage correspondant à ces mêmes histoires.Nos résultats mettent d'abord en évidence des similarités de haut niveau entre les représentations internes du cerveau et des modèles de langage. Dans une première partie, nous montrons que les activations des réseaux profonds prédisent linéairement l'activité cérébrale de sujets chez différents groupes (>500 participants), pour différentes modalités d'enregistrement (MEG et fMRI), modalités de stimulus (présentation auditive et visuelle), types de stimulus (mots isolés, phrases et histoires naturelles), langues (néerlandais et anglais) et modèles de langage. Cette correspondance est maximale dans les régions cérébrales souvent associées au langage, pour les algorithmes les plus performants et pour les participants qui comprennent le mieux les histoires. De plus, nous mettons en évidence une hiérarchie de traitement similaire entre les deux systèmes. Les premières couches des algorithmes sont alignées sur les régions de traitement de bas niveau dans le cerveau, telles que les zones auditives et le lobe temporal, tandis que les couches profondes sont alignées sur des régions associées à un traitement de plus haut niveau, notamment les zones fronto-pariétales.Nous montrons ensuite, dans une seconde partie, comment de telles similarités peuvent aider à construire de meilleurs modèles prédictifs de l'activité cérébrale, et à décomposer plus finement dans le cerveau différents processus linguistiques tels que la syntaxe et la sémantique.Enfin, dans une troisième partie, nous explorons les différences entre cerveau et algorithmes. Nous montrons que le cerveau prédit des représentations distantes et hiérarchiques, contrairement aux modèles de langage actuels qui sont principalement entraînés à faire des prédictions à court terme et au niveau du mot. Dans l'ensemble, les algorithmes modernes sont encore loin de traiter le langage de la même manière que les humains le font. Cependant, les liens directs entre leur fonctionnement interne et celui du cerveau fournissent une plateforme prometteuse pour mieux comprendre les deux systèmes, et ouvre la voie à la construction d'algorithmes plus similaires au cerveau

    Les représentations de langage dans les algorithmes d'apprentissage profonds et le cerveau

    No full text
    Algorithmes et cerveau, bien que de nature extrêmement différentes, sont deux systèmes capables d'effectuer des tâches de langage complexes. En particulier, de récentes avancées en intelligence artificielle ont permis l'émergence d'algorithmes produisant des textes de qualité remarquablement similaire à ceux des humains (ChatGPT, GPT-3). De telles similarités interrogent sur la façon dont le cerveau et ces algorithmes traitent le langage, les mécanismes qu'ils utilisent et les représentations internes qu'ils construisent. Ma thèse consiste à comparer les représentations internes de ces deux systèmes, d'identifier leurs similitudes et leurs différences.Pour ce faire, nous analysons les enregistrements par imagerie fonctionnelle (fMRI) et magnéto-encéphalographie (MEG) de participants écoutant et lisant des histoires, et les comparons aux activations de milliers d'algorithmes de langage correspondant à ces mêmes histoires.Nos résultats mettent d'abord en évidence des similarités de haut niveau entre les représentations internes du cerveau et des modèles de langage. Dans une première partie, nous montrons que les activations des réseaux profonds prédisent linéairement l'activité cérébrale de sujets chez différents groupes (>500 participants), pour différentes modalités d'enregistrement (MEG et fMRI), modalités de stimulus (présentation auditive et visuelle), types de stimulus (mots isolés, phrases et histoires naturelles), langues (néerlandais et anglais) et modèles de langage. Cette correspondance est maximale dans les régions cérébrales souvent associées au langage, pour les algorithmes les plus performants et pour les participants qui comprennent le mieux les histoires. De plus, nous mettons en évidence une hiérarchie de traitement similaire entre les deux systèmes. Les premières couches des algorithmes sont alignées sur les régions de traitement de bas niveau dans le cerveau, telles que les zones auditives et le lobe temporal, tandis que les couches profondes sont alignées sur des régions associées à un traitement de plus haut niveau, notamment les zones fronto-pariétales.Nous montrons ensuite, dans une seconde partie, comment de telles similarités peuvent aider à construire de meilleurs modèles prédictifs de l'activité cérébrale, et à décomposer plus finement dans le cerveau différents processus linguistiques tels que la syntaxe et la sémantique.Enfin, dans une troisième partie, nous explorons les différences entre cerveau et algorithmes. Nous montrons que le cerveau prédit des représentations distantes et hiérarchiques, contrairement aux modèles de langage actuels qui sont principalement entraînés à faire des prédictions à court terme et au niveau du mot. Dans l'ensemble, les algorithmes modernes sont encore loin de traiter le langage de la même manière que les humains le font. Cependant, les liens directs entre leur fonctionnement interne et celui du cerveau fournissent une plateforme prometteuse pour mieux comprendre les deux systèmes, et ouvre la voie à la construction d'algorithmes plus similaires au cerveau.Recent deep language models -- like GPT-3 and ChatGPT -- are capable to produce text that closely resembles that of humans. Such similarity raises questions about how the brain and deep models process language, the mechanisms they use, and the internal representations they construct. In this thesis, I compare the internal representations of the brain and deep language models, with the goal of identifying their similarities and differences. To this aim, I analyze functional resonance imaging (fMRI) and magnetoencephalography (MEG) recordings of participants listening to and reading sentences, and compare them to the activations of thousands of language algorithms corresponding to these same sentences.Our results first highlight high-level similarities between the internal representations of the brain and deep language models. We find that deep nets' activations significantly predict brain activity across subjects for different cohorts (>500 participants), recording modalities (MEG and fMRI), stimulus types (isolated words, sentences, and natural stories), stimulus modalities (auditory and visual presentation), languages (Dutch, English and French), and deep language models. This alignment is maximal in brain regions repeatedly associated with language, for the best-performing algorithms and for participants who best understand the stories. Critically, we evidence a similar processing hierarchy between the two systems. The first layers of the algorithms align with low-level processing regions in the brain, such as auditory areas and the temporal lobe, while the deep layers align with regions associated with higher-level processing, such fronto-parietal areas.We then show how such similarities can be leveraged to build better predictive models of brain activity and better decompose several linguistic processes in the brain, such as syntax and semantics. Finally, we explore the differences between deep language models and the brain's activations. We find that the brain predicts distant and hierarchical representations, unlike current language models that are mostly trained to make short-term and word-level predictions. Overall, modern algorithms are still far from processing language in the same way that humans do. However, the direct links between their inner workings and that of the brain provide an promising platform for better understanding both systems, and pave the way for building better algorithms inspired by the human brain

    Brains and algorithms partially converge in natural language processing

    No full text
    International audienceDeep learning algorithms trained to predict masked words from large amount of text have recently been shown to generate activations similar to those of the human brain. However, what drives this similarity remains currently unknown. Here, we systematically compare a variety of deep language models to identify the computational principles that lead them to generate brain-like representations of sentences. Specifically, we analyze the brain responses to 400 isolated sentences in a large cohort of 102 subjects, each recorded for two hours with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We then test where and when each of these algorithms maps onto the brain responses. Finally, we estimate how the architecture, training, and performance of these models independently account for the generation of brain-like representations. Our analyses reveal two main findings. First, the similarity between the algorithms and the brain primarily depends on their ability to predict words from context. Second, this similarity reveals the rise and maintenance of perceptual, lexical, and compositional representations within each cortical region. Overall, this study shows that modern language algorithms partially converge towards brain-like solutions, and thus delineates a promising path to unravel the foundations of natural language processing

    The Mapping of Deep Language Models on Brain Responses Primarily Depends on their Performance

    No full text
    Recent deep networks like transformers not only excel in several language tasks, but their activations linearly map onto the human brain during language processing. Is this functional similarity caused by specific factors, such as the language abilities and the architecture of the algorithms? To address this issue, we analyze the brain responses to isolated sentences in a large cohort of 102 subjects, each recorded with both functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We then compare the ability of 32,400 transformer embeddings to linearly map onto these brain responses. Finally, we evaluate how the architecture, training, and performance of the models independently account for this brain mapping. Our analyses reveal two main findings. First, the similarity between brain responses and the activations of language models primarily depends on their ability to predict words from the context. Second, this similarity allows us to decompose and precisely track the rise and maintenance of perceptual, lexical, and compositional representations within each cortical region. Overall, this study evidences a partial convergence of language transformers to brainlike solutions, and shows how this phenomenon helps unravel the brain bases of natural language processing

    Disentangling Syntax and Semantics in the Brain with Deep Networks

    No full text
    International audienceThe activations of language transformers like GPT-2 have been shown to linearly map onto brain activity during speech comprehension. However, the nature of these activations remains largely unknown and presumably conflate distinct linguistic classes. Here, we propose a taxonomy to factorize the high-dimensional activations of language models into four combinatorial classes: lexical, compositional, syntactic, and semantic representations. We then introduce a statistical method to decompose, through the lens of GPT-2's activations, the brain activity of 345 subjects recorded with functional magnetic resonance imaging (fMRI) during the listening of 4.6 hours of narrated text. The results highlight two findings. First, compositional representations recruit a more widespread cortical network than lexical ones, and encompass the bilateral temporal, parietal and prefrontal cortices. Second, contrary to previous claims, syntax and semantics are not associated with separated modules, but, instead, appear to share a common and distributed neural substrate. Overall, this study introduces a versatile framework to isolate, in the brain activity, the distributed representations of linguistic constructs

    Deep language algorithms predict semantic comprehension from brain activity

    No full text
    International audienceDeep language algorithms, like GPT-2, have demonstrated remarkable abilities to process text, and now constitute the backbone of automatic translation, summarization and dialogue. However, whether these models encode information that relates to human comprehension still remains controversial. Here, we show that the representations of GPT-2 not only map onto the brain responses to spoken stories, but they also predict the extent to which subjects understand the corresponding narratives. To this end, we analyze 101 subjects recorded with functional Magnetic Resonance Imaging while listening to 70 min of short stories. We then fit a linear mapping model to predict brain activity from GPT-2’s activations. Finally, we show that this mapping reliably correlates (R=0.50,p<10−15) with subjects’ comprehension scores as assessed for each story. This effect peaks in the angular, medial temporal and supra-marginal gyri, and is best accounted for by the long-distance dependencies generated in the deep layers of GPT-2. Overall, this study shows how deep language models help clarify the brain computations underlying language comprehension

    Model-based analysis of brain activity reveals the hierarchy of language in 305 subjects

    No full text
    International audienceA popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli (e.g. regular speech versus scrambled words, sentences, or paragraphs). Although successful, this 'model-free' approach necessitates the acquisition of a large and costly set of neuroimaging data. Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli. We capitalize on the recently-discovered similarities between deep language models and the human brain to compute the mapping between i) the brain responses to regular speech and ii) the activations of deep language models elicited by modified stimuli (e.g. scrambled words, sentences, or paragraphs). Our model-based approach successfully replicates the seminal study of (Lerner et al., 2011), which revealed the hierarchy of language areas by comparing the functional-magnetic resonance imaging (fMRI) of seven subjects listening to 7 min of both regular and scrambled narratives. We further extend and precise these results to the brain signals of 305 individuals listening to 4.1 hours of narrated stories. Overall, this study paves the way for efficient and flexible analyses of the brain bases of language

    Model-based analysis of brain activity reveals the hierarchy of language in 305 subjects

    No full text
    International audienceA popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli (e.g. regular speech versus scrambled words, sentences, or paragraphs). Although successful, this 'model-free' approach necessitates the acquisition of a large and costly set of neuroimaging data. Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli. We capitalize on the recently-discovered similarities between deep language models and the human brain to compute the mapping between i) the brain responses to regular speech and ii) the activations of deep language models elicited by modified stimuli (e.g. scrambled words, sentences, or paragraphs). Our model-based approach successfully replicates the seminal study of (Lerner et al., 2011), which revealed the hierarchy of language areas by comparing the functional-magnetic resonance imaging (fMRI) of seven subjects listening to 7 min of both regular and scrambled narratives. We further extend and precise these results to the brain signals of 305 individuals listening to 4.1 hours of narrated stories. Overall, this study paves the way for efficient and flexible analyses of the brain bases of language
    corecore