2,375 research outputs found

    Helicopter main-rotor speed effects: A comparison of predicted ranges of detection from the aural detection program ICHIN and the electronic detection program ARCAS

    Get PDF
    NASA LaRC personnel have conducted a strudy of the predicted acoustic detection ranges associated with reduced helicopter main rotor speeds. This was accomplished by providing identical input information to both the aural detection program ICHIN 6, (I Can Hear It Now, version 6) and the electronic acoustic detection program ARCAS (Assessment of Rotorcraft Detection by Acoustics Sensing). In this study, it was concluded that reducing the main rotor speed of the helicopter by 27 percent reduced both the predicted aural and electronic detection ranges by approximately 50 percent. Additionally, ARCAS was observed to function better with narrowband spectral input than with one-third octave band spectral inputs and the predicted electronic range of acoustic detection is greater than the predicted aural detection range

    Media violence and subsequent behavior : a test of competing theories

    Get PDF

    Environmental associations of cownose ray (Rhinoptera bonasus) seasonal presence along the U.S. Atlantic Coast

    Get PDF
    Identifying the mechanistic drivers of migration can be crucial in shaping conservation and management policies. The cownose ray (Rhinoptera bonasus) is a relatively poorly understood elasmobranch species that occurs along the U.S. Atlantic coast and undergoes large-scale seasonal migrations. To better understand the drivers and timing of cownose ray seasonal migration in order to inform potential management measures, we analyzed telemetry detections of 51 mature cownose rays (38 female, 13 male) tagged with acoustic transmitters in the Maryland and Virginia portions of Chesapeake Bay. Detections within their summer habitat in Chesapeake Bay and winter habitat in the vicinity of Cape Canaveral, Florida, were matched with publicly available sea surface temperature (SST) data recorded by data buoys near the areas of tag detections and with local photoperiod and day of year. These variables were used in boosted regression tree models of ray presence (all rays combined, females only, and males only) in each seasonal habitat. Models were developed for presence during the entire summer and winter season, and for the time periods of arrival and departure from both summer and winter habitats. Seasonal presence in both summer and winter habitats was associated with distinct temperature, photoperiod, and date ranges, with temperature as the most influential variable in seasonal models. In models of arrival and departure periods, southward migration (departure from Chesapeake Bay and arrival off Cape Canaveral) was strongly associated with SST for all rays and arrival in the Chesapeake Bay region after northward migration was most strongly associated with day of year. The most influential variable during the period of northward departure from Cape Canaveral differed between males (day of year) and females (SST). This suggests that mature female northward migration may be driven by temperature while male northward migration may be driven by endogenous cues. These findings provide detailed information on the timing of cownose ray arrival at, presence in, and departure from seasonal habitats and provide potential justification for including the species in cross-taxa comparative studies on migratory behavior

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise

    Get PDF
    The amplification of coastal hazards such as distant-source tsunamis under future relative sea-level rise (RSLR) is poorly constrained. In southern California, the Alaska-Aleutian subduction zone has been identified as an earthquake source region of particular concern for a worst-case scenario distant-source tsunami. Here, we explore how RSLR over the next century will influence future maximum nearshore tsunami heights (MNTH) at the Ports of Los Angeles and Long Beach. Earthquake and tsunami modeling combined with local probabilistic RSLR projections show the increased potential for more frequent, relatively low magnitude earthquakes to produce distant-source tsunamis that exceed historically observed MNTH. By 2100, under RSLR projections for a high-emissions representative concentration pathway (RCP8.5), the earthquake magnitude required to produce \u3e1 m MNTH falls from ~Mw9.1 (required today) to Mw8.0, a magnitude that is ~6.7 times more frequent along the Alaska-Aleutian subduction zone

    Hot Carrier Transport and Photocurrent Response in Graphene

    Full text link
    Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.Comment: 4 pgs, 2 fg

    Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

    Get PDF
    Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications

    Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year

    Get PDF
    As a contribution to the International Polar Year program MERGE (Microbiological and Ecological Responses to Global Environmental change in polar regions), studies were conducted on the terrestrial and aquatic microbial ecosystems of northern Canada (details at: http://www.cen.ulaval.ca/merge/). The habitats included permafrost soils, saline coldwater springs, supraglacial lakes on ice shelves, epishelf lakes in fjords, deep meromictic lakes, and shallow lakes, ponds and streams. Microbiological samples from each habitat were analysed by HPLC pigment assays, light and fluorescence microscopy, and DNA sequencing. The results show a remarkably diverse microflora of viruses, Archaea (including ammonium oxidisers and methanotrophs), Bacteria (including filamentous sulfur-oxidisers in a saline spring and benthic mats of Cyanobacteria in many waterbodies), and protists (including microbial eukaryotes in snowbanks and ciliates in ice-dammed lakes). In summer 2008, we recorded extreme warming at Ward Hunt Island and vicinity, the northern limit of the Canadian high Arctic, with air temperatures up to 20.5 \ub0C. This was accompanied by pronounced changes in microbial habitats: deepening of the permafrost active layer; loss of perennial lake ice and sea ice; loss of ice-dammed freshwater lakes; and 23% loss of total ice shelf area, including complete break-up and loss of the Markham Ice Shelf cryo-ecosystem. These observations underscore the vulnerability of Arctic microbial ecosystems to ongoing climate change.Peer reviewed: YesNRC publication: Ye

    Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year

    Get PDF
    As a contribution to the International Polar Year program MERGE (Microbiological and Ecological Responses to Global Environmental change in polar regions), studies were conducted on the terrestrial and aquatic microbial ecosystems of northern Canada (details at: http://www.cen.ulaval.ca/merge/). The habitats included permafrost soils, saline coldwater springs, supraglacial lakes on ice shelves, epishelf lakes in fjords, deep meromictic lakes, and shallow lakes, ponds and streams. Microbiological samples from each habitat were analysed by HPLC pigment assays, light and fluorescence microscopy, and DNA sequencing. The results show a remarkably diverse microflora of viruses, Archaea (including ammonium oxidisers and methanotrophs), Bacteria (including filamentous sulfur-oxidisers in a saline spring and benthic mats of Cyanobacteria in many waterbodies), and protists (including microbial eukaryotes in snowbanks and ciliates in ice-dammed lakes). In summer 2008, we recorded extreme warming at Ward Hunt Island and vicinity, the northern limit of the Canadian high Arctic, with air temperatures up to 20.5 \ub0C. This was accompanied by pronounced changes in microbial habitats: deepening of the permafrost active layer; loss of perennial lake ice and sea ice; loss of ice-dammed freshwater lakes; and 23% loss of total ice shelf area, including complete break-up and loss of the Markham Ice Shelf cryo-ecosystem. These observations underscore the vulnerability of Arctic microbial ecosystems to ongoing climate change.Peer reviewed: YesNRC publication: Ye
    • …
    corecore