51 research outputs found

    Disease decreases variation in host community structure in an old-field grassland

    Full text link
    Disease may modulate variation in host community structure by modifying the interplay of deterministic and stochastic processes. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation in structure among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the duration of fungicide exposure and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. Despite changes in structure of the plant communities over the experiment’s three years, the effects of disease reduction on plant richness and biomass were consistent across years. However, disease reduction did not reduce variation in host community structure, providing little evidence for ecological selection by competition or other deterministic processes. Instead, disease reduction tended to amplify variation in host community structure among replicate communities (i.e., within fungicide treatment groups), suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure

    Oct4-Induced Reprogramming Is Required for Adult Brain Neural Stem Cell Differentiation into Midbrain Dopaminergic Neurons

    Get PDF
    Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency

    RNA-seq Analysis Reveals That an ECF σ Factor, AcsS, Regulates Achromobactin Biosynthesis in Pseudomonas syringae pv. syringae B728a

    Get PDF
    Iron is an essential micronutrient for Pseudomonas syringae pv. syringae strain B728a and many other microorganisms; therefore, B728a has evolved methods of iron acquirement including the use of iron-chelating siderophores. In this study an extracytoplasmic function (ECF) sigma factor, AcsS, encoded within the achromobactin gene cluster is shown to be a major regulator of genes involved in the biosynthesis and secretion of this siderophore. However, production of achromobactin was not completely abrogated in the deletion mutant, implying that other regulators may be involved such as PvdS, the sigma factor that regulates pyoverdine biosynthesis. RNA-seq analysis identified 287 genes that are differentially expressed between the AcsS deletion mutant and the wild type strain. These genes are involved in iron response, secretion, extracellular polysaccharide production, and cell motility. Thus, the transcriptome analysis supports a role for AcsS in the regulation of achromobactin production and the potential activity of both AcsS and achromobactin in the plant-associated lifestyle of strain B728a

    Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    Get PDF
    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    The Associations of Competitive Trait Anxiety and Personal Control With Burnout in Sport

    No full text
    The incidence of athlete burnout among competitive athletes from youth, high school, and collegiate age groups as well as the associations between competitive trait anxiety and personal control with athlete burnout were explored. The sample consisted of 153 competitive athletes (58 men, 95 women) from three age groups. The Eades Athlete Burnout Inventory (Eades, 1990), Sport Anxiety Scale (Smith, Smoll, & Schutz, 1990), and a modified version of the Control Over One\u27s Sport Environment scale (Tetrick & Larocco, 1987) were completed by 30 youth (ages 10-13 years), 67 high school (ages 14-18 years), and 56 college (ages 18-22 years) athletes. Also, a directional scale was added to the Sport Anxiety Scale on which athletes rated the extent to which items were perceived as helpful or hurtful to performance. Results revealed that overall the sample reported a low incidence of burnout (M = 62.88, SD = 33.67). A moderate to strong positive relationship (r = .645) between athlete burnout and competitive trait anxiety was found as well as a moderate negative correlation (r = -.433) between athlete burnout and perceived control. Youth athletes (M = 28.21, SD = 18.41) scored significantly (p \u3c .05) lower on the EABI than high school (M = 69.66, SD = 21.93) and college (M = 72.95, SD = 39.24) athletes, and women (M = 68.89, SD = 37.49) reported significantly (p \u3c .05) higher burnout scores than men (M = 52.19, SD = 22.19). Somatic anxiety was perceived to be helpful to performance (M = 2.50, SD = 12.95) while worry (M = -1.75, SD = 11.34) and concentration disruption (M = -1.01, SD = 8.54) were perceived as detrimental to performance. Implications of results and directions for future research are discussed

    Disease decreases variation in host community structure in an old-field grassland.

    No full text
    Disease may drive variation in host community structure by modifying the interplay of deterministic and stochastic processes that shape communities. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When communities have higher levels of disease and disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the seasonal duration of fungicide treatment and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. These changes in richness and aboveground biomass were consistent across years despite changes in structure of the plant communities over the experiment's three years. Importantly, disease reduction amplified host community variation, suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure
    • …
    corecore