123 research outputs found

    Prime Focus Spectrograph - Subaru's future -

    Full text link
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru's wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a wide-field metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 {\mu}m to 1.3 {\mu}m will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, & JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru.Comment: 13 pages, 11 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki Takami, Editors, Proc. SPIE 8446 (2012)

    The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey

    Full text link
    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and accepted by AJ. Provides background for the instrument responsible for SDSS and BOSS spectra. 4th in a series of survey technical papers released in Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral Classification), and arXiv:1208.0022 (BOSS Overview

    Coupling computer-interpretable guidelines with a drug-database through a web-based system – The PRESGUID project

    Get PDF
    BACKGROUND: Clinical Practice Guidelines (CPGs) available today are not extensively used due to lack of proper integration into clinical settings, knowledge-related information resources, and lack of decision support at the point of care in a particular clinical context. OBJECTIVE: The PRESGUID project (PREScription and GUIDelines) aims to improve the assistance provided by guidelines. The project proposes an online service enabling physicians to consult computerized CPGs linked to drug databases for easier integration into the healthcare process. METHODS: Computable CPGs are structured as decision trees and coded in XML format. Recommendations related to drug classes are tagged with ATC codes. We use a mapping module to enhance computerized guidelines coupling with a drug database, which contains detailed information about each usable specific medication. In this way, therapeutic recommendations are backed up with current and up-to-date information from the database. RESULTS: Two authoritative CPGs, originally diffused as static textual documents, have been implemented to validate the computerization process and to illustrate the usefulness of the resulting automated CPGs and their coupling with a drug database. We discuss the advantages of this approach for practitioners and the implications for both guideline developers and drug database providers. Other CPGs will be implemented and evaluated in real conditions by clinicians working in different health institutions

    Update: cohort mortality study of workers highly exposed to polychlorinated biphenyls (PCBs) during the manufacture of electrical capacitors, 1940-1998

    Get PDF
    BACKGROUND: The National Institute for Occupational Safety and Health previously reported mortality for a cohort of workers considered highly exposed to polychlorinated biphenyls (PCBs) between 1939 and 1977 at two electrical capacitor manufacturing plants. The current study updated vital status, examined liver and rectal cancer mortality previously reported in excess in this cohort and evaluated mortality from non-Hodgkin's lymphoma (NHL) and cancers of the stomach, intestine, breast, prostate, skin (melanoma) and brain reported to be in excess in other cohort and case-control studies of PCB-exposed persons. METHODS: Mortality was updated through 1998 for 2572 workers. Age-, gender-, race- and calendar year-adjusted standardized mortality ratios (SMRs) and 95% confidence intervals (CI) were calculated using U.S., state and county referent rates. SMRs using U.S. referent rates are reported. Duration of employment was used as a surrogate for exposure. RESULTS: Consistent with the previous follow-up, mortality from biliary passage, liver and gall bladder cancer was significantly elevated (11 deaths, SMR 2.11, CI 1.05 – 3.77), but mortality from rectal cancer was not (6 deaths, SMR 1.47, CI 0.54 – 3.21). Among women, mortality from intestinal cancer (24 deaths, SMR 1.89, CI 1.21 – 2.82) and from "other diseases of the nervous system and sense organs", which include Parkinson's disease and amyotrophic lateral sclerosis, (15 deaths, SMR 2.07, CI 1.16 – 3.42) were elevated. There were four ALS deaths, all women (SMR 4.35, CI 1.19–11.14). Mortality was elevated for myeloma (7 deaths, SMR 2.11, CI 0.84 – 4.34), particularly among workers employed 10 years or more (5 deaths, SMR 2.80, CI 0.91 – 6.54). No linear associations between mortality and duration of employment were observed for the cancers of interest. CONCLUSION: This update found that the earlier reported excess in this cohort for biliary, liver and gall bladder cancer persisted with longer follow-up. Excess mortality for intestinal cancer among women was elevated across categories of duration of employment; myeloma mortality was highest among those working 10 years or more. The small numbers of deaths from liver and intestinal cancers, myeloma and nervous system diseases coupled with the lack of an exposure-response relationship with duration of employment preclude drawing definitive conclusions regarding PCB exposure and these causes of death

    The 2.5 m Telescope of the Sloan Digital Sky Survey

    Full text link
    We describe the design, construction, and performance of the Sloan Digital Sky Survey Telescope located at Apache Point Observatory. The telescope is a modified two-corrector Ritchey-Chretien design which has a 2.5-m, f/2.25 primary, a 1.08-m secondary, a Gascoigne astigmatism corrector, and one of a pair of interchangeable highly aspheric correctors near the focal focal plane, one for imaging and the other for spectroscopy. The final focal ratio is f/5. The telescope is instrumented by a wide-area, multiband CCD camera and a pair of fiber-fed double spectrographs. Novel features of the telescope include: (1) A 3 degree diameter (0.65 m) focal plane that has excellent image quality and small geometrical distortions over a wide wavelength range (3000 to 10,600 Angstroms) in the imaging mode, and good image quality combined with very small lateral and longitudinal color errors in the spectroscopic mode. The unusual requirement of very low distortion is set by the demands of time-delay-and-integrate (TDI) imaging; (2) Very high precision motion to support open loop TDI observations; and (3) A unique wind baffle/enclosure construction to maximize image quality and minimize construction costs. The telescope had first light in May 1998 and began regular survey operations in 2000.Comment: 87 pages, 27 figures. AJ (in press, April 2006

    Measurement of the W mass in e+ee^+ e^- collisions at 183 GeV

    No full text
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 57 pb1^{-1} collected with the ALEPH detector in 1997 at a centre-of-mass energy of 183 GeV. The invariant mass distributions of reweighted Monte Carlo events are fitted separately to the experimental distributions in the qqbarqqbarqqbarqqbar and all l\nuqqbar channels to give the following W masses: mWhadronic=80.461±0.177(stat.)±0.045(syst.)±0.056(theory)GeV/c2m_{W}^{hadronic} = 80.461 \pm 0.177(stat.) \pm 0.045(syst.) \pm 0.056(theory) GeV/c^2, mWsemileptonic=80.326±0.184(stat.)±0.040(syst.)GeV/c2m_{W}^{semileptonic} = 80.326 \pm 0.184(stat.) \pm 0.040(syst.) GeV/c^2 where the theory error represents the possible effects of final state interactions. The combination of these two measurements, including the LEP energy calibration uncertainty, gives $m_{W} = 80.393 \pm 0.128(stat.)\pm 0.041(syst.) \pm 0.028(theory)\pm 0.021(LEP) GeV/c^2

    Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    Full text link
    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 um to 1.26 um, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 um to 0.89 um also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts project, while Hyper Suprime-Cam works on the imaging part. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated glass-molded microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms.Comment: 14 pages, 12 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy V, Suzanne K. Ramsay, Ian S. McLean, Hideki Takami, Editors, Proc. SPIE 9147 (2014)
    corecore