43 research outputs found

    Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction

    Get PDF
    Genetics plays a central role in susceptibility to obesity and metabolic diseases. BALB/c mice are known to be resistant to high fat diet (HFD)-induced obesity, however the genetic cause remains unknown. We report that deletion of the innate immunity antibacterial gene Nod2 abolishes this resistance, as Nod2 -/- BALB/c mice developed HFD-dependent obesity and hallmark features of metabolic syndrome. Nod2 -/- HFD mice developed hyperlipidemia, hyperglycemia, glucose intolerance, increased adiposity, and steatosis, with large lipid droplets in their hepatocytes. These changes were accompanied by increased expression of immune genes in adipose tissue and differential expression of genes for lipid metabolism, signaling, stress, transport, cell cycle, and development in both adipose tissue and liver. Nod2 -/- HFD mice exhibited changes in the composition of the gut microbiota and long-term treatment with antibiotics abolished diet-dependent weight gain in Nod2 -/- mice, but not in wild type mice. Furthermore, microbiota from Nod2 -/- HFD mice transferred sensitivity to weight gain, steatosis, and hyperglycemia to wild type germ free mice. In summary, we have identified a novel role for Nod2 in obesity and demonstrate that Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction

    Mast Cell-Derived Histamine Mediates Cystitis Pain

    Get PDF
    Background: Mast cells trigger inflammation that is associated with local pain, but the mechanisms mediating pain are unclear. Interstitial cystitis (IC) is a bladder disease that causes debilitating pelvic pain of unknown origin and without consistent inflammation, but IC symptoms correlate with elevated bladder lamina propria mast cell counts. We hypothesized that mast cells mediate pelvic pain directly and examined pain behavior using a murine model that recapitulates key aspects of IC. Methods and Findings: Infection of mice with pseudorabies virus (PRV) induces a neurogenic cystitis associated with lamina propria mast cell accumulation dependent upon tumor necrosis factor alpha (TNF), TNF-mediated bladder barrier dysfunction, and pelvic pain behavior, but the molecular basis for pelvic pain is unknown. In this study, both PRV-induced pelvic pain and bladder pathophysiology were abrogated in mast cell-deficient mice but were restored by reconstitution with wild type bone marrow. Pelvic pain developed normally in TNF- and TNF receptor-deficient mice, while bladder pathophysiology was abrogated. Conversely, genetic or pharmacologic disruption of histamine receptor H1R or H2R attenuated pelvic pain without altering pathophysiology. Conclusions: These data demonstrate that mast cells promote cystitis pain and bladder pathophysiology through the separable actions of histamine and TNF, respectively. Therefore, pain is independent of pathology and inflammation, an

    Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats

    Full text link
    The present study examined the role of ovarian steroids in contextual fear conditioning and hippocampal synaptic plasticity in female rats. In experiment 1, adult female rats were ovariectomized and submitted to contextual fear conditioning, a procedure in which rats received unsignaled footshock in a novel observation chamber; freezing behavior served as the measure of conditional fear. Ovariectomized female rats froze at levels comparable to male rats, both of which froze significantly more than sham-operated female rats. In experiment 2, estrogen replacement in ovariectomized female rats reduced fear conditioning to a level comparable to that of sham-operated females in experiment 1. In experiment 3, the influence of estrogen on the induction of long-term potentiation (LTP) at perforant path-dentate granule cell synapses in ovariectomized female rats was examined. Estrogen decreased both population spike LTP and EPSP-spike potentiation at perforant path synapses. Taken together, these experiments indicate that ovarian steroids regulate both sexually dimorphic behavior and hippocampal plasticity in a fear-conditioning paradigm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/61943/1/guptaBRES01.pd

    Author Correction: Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper
    corecore