2,461 research outputs found

    Study of leptoquark pair production at the LHC with the CMS detector

    Get PDF
    We study the discovery potential of the CMS detector for the scalar leptoquark pair production at the LHC. Present and future exclusion limits are considered. We find that the maximal leptoquark mass reach is about 1.47 TeV for the branching ratio of Br(LQ_l -> l q)=100 %, while for Br(LQ_l -> l q)=50 % the upper limit is 1.2 TeV for an integrated luminosity of 100 fb-1. We obtain comparable results for electron and muon-type leptoquarks. The pileup effect at high luminosity is discussed.Comment: 10 pages, 7 figures, 4 tables, UNIX LaTe

    Study of CP violation in D->VV decay at BESIII

    Get PDF
    In this paper, we intend to study the problem of CP violation in DD meson by D→VVD\to VV decay mode in which the T violating triple-product correlation is examined. That would undoubtedly be another excellent probe of New Physics beyond Standard Model. For the neutral DD, we focus on direct CP violation without considering D0−Dˉ0D^0-\bar D^0 oscillation. Experimentally, by a full angular analysis one may obtain such CP violating signals, and particularly it is worth mentioning that the upcoming large DD data samples at BES-III in Beijing will provide a great opportunity to perform it.Comment: 5 pages, 2 tables and 1 figure, version to appear in Phys. Lett.

    Drosophila mauve Mutants Reveal a Role of LYST Homologs in the Maturation of Phagosomes and Autophagosomes

    Get PDF
    Chediak-Higashi syndrome (CHS) is a lethal disease caused by mutations that inactivate the lysosomal trafficking regulator protein (LYST). Patients suffer from diverse symptoms including oculocutaneous albinism, recurrent infections, neutropenia and progressive neurodegeneration. These defects have been traced back to over-sized lysosomes and lysosome-related organelles (LROs) in different cell types. Here, we explore mutants in the Drosophila mauve gene as a new model system for CHS. The mauve gene (CG42863) encodes a large BEACH domain protein of 3535 amino acids similar to LYST. This reflects a functional homology between these proteins as mauve mutants also display enlarged LROs, such as pigment granules. This Drosophila model also replicates the enhanced susceptibility to infections and we show a defect in the cellular immune response. Early stages of phagocytosis proceed normally in mauve mutant hemocytes but, unlike in wild type, late phagosomes fuse and generate large vacuoles containing many bacteria. Autophagy is similarly affected in mauve fat bodies as starvation-induced autophagosomes grow beyond their normal size. Together these data suggest a model in which Mauve functions to restrict homotypic fusion of different pre-lysosomal organelles and LROs

    Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans

    Get PDF
    Objective: Stimulation of the primary somatosensory cortex (S1) has been successful in evoking artificial somatosensation in both humans and animals, but much is unknown about the optimal stimulation parameters needed to generate robust percepts of somatosensation. In this study, the authors investigated frequency as an adjustable stimulation parameter for artificial somatosensation in a closed-loop brain-computer interface (BCI) system. Methods: Three epilepsy patients with subdural mini-electrocorticography grids over the hand area of S1 were asked to compare the percepts elicited with different stimulation frequencies. Amplitude, pulse width, and duration were held constant across all trials. In each trial, subjects experienced 2 stimuli and reported which they thought was given at a higher stimulation frequency. Two paradigms were used: first, 50 versus 100 Hz to establish the utility of comparing frequencies, and then 2, 5, 10, 20, 50, or 100 Hz were pseudorandomly compared. Results: As the magnitude of the stimulation frequency was increased, subjects described percepts that were “more intense” or “faster.” Cumulatively, the participants achieved 98.0% accuracy when comparing stimulation at 50 and 100 Hz. In the second paradigm, the corresponding overall accuracy was 73.3%. If both tested frequencies were less than or equal to 10 Hz, accuracy was 41.7% and increased to 79.4% when one frequency was greater than 10 Hz (p = 0.01). When both stimulation frequencies were 20 Hz or less, accuracy was 40.7% compared with 91.7% when one frequency was greater than 20 Hz (p < 0.001). Accuracy was 85% in trials in which 50 Hz was the higher stimulation frequency. Therefore, the lower limit of detection occurred at 20 Hz, and accuracy decreased significantly when lower frequencies were tested. In trials testing 10 Hz versus 20 Hz, accuracy was 16.7% compared with 85.7% in trials testing 20 Hz versus 50 Hz (p < 0.05). Accuracy was greater than chance at frequency differences greater than or equal to 30 Hz. Conclusions: Frequencies greater than 20 Hz may be used as an adjustable parameter to elicit distinguishable percepts. These findings may be useful in informing the settings and the degrees of freedom achievable in future BCI systems

    Sentimental Eyes

    Get PDF
    Illustration of young woman with bowtie in hairhttps://scholarsjunction.msstate.edu/cht-sheet-music/12175/thumbnail.jp

    A Time Series Analysis of Air Pollution and Preterm Birth in Pennsylvania, 1997–2001

    Get PDF
    Preterm delivery can lead to serious infant health outcomes, including death and lifelong disability. Small increases in preterm delivery risk in relation to spatial gradients of air pollution have been reported, but previous studies may have controlled inadequately for individual factors. Using a time-series analysis, which eliminates potential confounding by individual risk factors that do not change over short periods of time, we investigated the effect of ambient outdoor particulate matter with diameter ≀10 ÎŒm (PM(10)) and sulfur dioxide on risk for preterm delivery. Daily counts of preterm births were obtained from birth records in four Pennsylvania counties from 1997 through 2001. We observed increased risk for preterm delivery with exposure to average PM(10) and SO(2) in the 6 weeks before birth [respectively, relative risk (RR) = 1.07; 95% confidence interval (CI), 0.98–1.18 per 50 ÎŒg/m(3) increase; RR = 1.15; 95% CI, 1.00–1. 32 per 15 ppb increase], adjusting for long-term preterm delivery trends, co-pollutants, and offsetting by the number of gestations at risk. We also examined lags up to 7 days before the birth and found an acute effect of exposure to PM(10) 2 days and 5 days before birth (respectively, RR = 1.10; 95% CI, 1.00–1.21; RR = 1.07; 95% CI, 0.98–1.18) and SO(2) 3 days before birth (RR = 1.07; 95% CI, 0.99–1.15), adjusting for covariates, including temperature, dew point temperature, and day of the week. The results from this time-series analysis, which provides evidence of an increase in preterm birth risk with exposure to PM(10) and SO(2), are consistent with prior investigations of spatial contrasts

    Molecular Excitation and Differential Gas-Phase Depletions in the IC 5146 Dark Cloud

    Get PDF
    We present a combined near-infrared and molecular-line study of 25' x 8' area in the Northern streamer of the IC 5146 cloud. Using the technique pioneered by Lada et al 1994, we construct a Gaussian smoothed map of the infrared extinction with the same resolution as the molecular line observations in order to examine correlations of integrated intensities and molecular abundances with extinction for C17O, C34S, and N2H+. We find that over a visual extinction range of 0 to 40 magnitudes, there is good evidence for the presence of differential gas-phase depletions in the densest portions of IC 5146. Both CO and CS exhibit a statistically significant (factor of ~3) abundance reduction near Av ~ 12 magnitudes while, in direct contrast, at the highest extinctions, Av > 10 magnitudes, N2H+ appears relatively undepleted. Moreover, for Av < 4 magnitudes there exists little or no N2H+. This pattern of depletions is consistent with the predictions of chemical theory.Comment: 36 pages (13 figures), accepted by the Astrophysical Journa
    • 

    corecore