Study of $C P$ violation in $D \rightarrow$ View meladata, ctation and similar papers a tcore.acuk

Xian-Wei Kang ${ }^{\text {a,b,* }}$, Hai-Bo Li ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of High Energy Physics, PO Box 918, Beijing 100049, China
${ }^{\text {b }}$ Department of Physics, Henan Normal University, Xinxiang 453007, China

A R T I C L E I N F O

Article history:

Received 11 December 2009
Received in revised form 4 January 2010
Accepted 12 January 2010
Editor: G.F. Giudice

Abstract

In this Letter, we intend to study the problem of $C P$ violation in D meson by $D \rightarrow V V$ decay mode in which the T violating triple-product correlation is examined. That would undoubtedly be another excellent probe of New Physics beyond Standard Model. For the neutral D, we focus on direct $C P$ violation without considering $D^{0}-\bar{D}^{0}$ oscillation. Experimentally, by a full angular analysis one may obtain such $C P$ violating signals, and particularly it is worth mentioning that the upcoming large D data samples at BES-III in Beijing will provide a great opportunity to perform it.

© 2010 Elsevier B.V. Open access under CC BY license.

The topic of $C P$ violation in the D-meson sector has been the subject of extensive studies involving both charged and neutral D meson decays these years [1-12]. In a recent reference [13], they exploited the angular and quantum correlation in the $D^{0} \bar{D}^{0}$ pairs produced through the decay of the $\psi(3770)$ resonance at BESIII to investigate $C P$ violation. They build $C P$ violating observables in $e^{+} e^{-} \rightarrow \psi(3770) \rightarrow D^{0} \bar{D}^{0} \rightarrow\left(V_{1} V_{2}\right)\left(V_{3} V_{4}\right)$ (V denotes vector meson) to isolate specific New Physics effects in the charm sector [13].

In practice, one can also probe the $C P$ violation in D meson by one D decay without considering the quantum correlation, which is the motivation of this Letter. Among the various kinds of D decay modes, $D \rightarrow V_{1} V_{2}$ and subsequently decaying to two pseudoscalars for each vector meson is a particularly interesting one in the perspective of the copious kinematics of final state interaction (FSI). As the same case in B meson [14,15], the new type of T violating signal involving so-called triple-product (TP) will emerge by comparing a pair of $C P$ conjugate processes, where TP is composed of the momentum of one vector meson and two polarizations. Assuming CPT invariance, T violating TP asymmetry is equivalent to $C P$ violating. We shall see in this Letter that such TP asymmetries are related to the helicity components in the angular distribution of the $D \rightarrow V_{1} V_{2}$ process. Moreover, performing a full angular analysis is feasible and realistic in experiment.

On the other hand, TP asymmetry (in the latter section we sometimes also refer to TP asymmetry as CP asymmetry assuming CPT invariance) is a sensitive signal of New Physics. It is well known that Standard Model (SM) predictions for CP violation in

[^0]the charm sector are very small, thus any significant such signals would be exciting. Currently, the BES-III experiment is collecting data at $\psi(3770)$ peak. In the short future, lots of events of D decay will be accumulated, which will provide a great opportunity to perform a full angular analysis to further achieve a valuable information for the question discussed here.

Let us first consider the process $D(p) \rightarrow V_{1}\left(k, \epsilon_{1}\right) V_{2}\left(q, \epsilon_{2}\right)$, where the two vectors V_{1}, V_{2} are characterized as their fourmomenta and polarizations $\left(k, \epsilon_{1}\right)$ and $\left(q, \epsilon_{2}\right)$, respectively. We can write the most general invariant amplitude as a sum of three terms that we will call s, d, p [14-17],

$$
\begin{align*}
\mathcal{M} \equiv a s+b d+i c p= & a \epsilon_{1}^{*} \cdot \epsilon_{2}^{*}+\frac{b}{m_{1} m_{2}}\left(p \cdot \epsilon_{1}^{*}\right)\left(p \cdot \epsilon_{2}^{*}\right) \\
& +i \frac{c}{m_{1} m_{2}} \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta}, \tag{1}
\end{align*}
$$

where $m_{1}\left(m_{2}\right)$ is the mass of $V_{1}\left(V_{2}\right)$, and the scalar coefficients a, b and c are generally complex and can receive contributions from several amplitudes with different phases. Thus, one can parameterize the coefficients as [14]
$a=\sum_{j} a_{j} e^{i \delta_{s j}} e^{i \phi_{s j}}$,
$b=\sum_{j} b_{j} e^{i \delta_{d j}} e^{i \phi_{d j}}$,
$c=\sum_{j} c_{j} e^{i \delta_{p j}} e^{i \phi_{p j}}$,
where a_{j}, b_{j} and c_{j} are the moduli of their corresponding complex quantities, and δ_{j} denotes strong phase (also called unitary phase in Ref. [14]), and ϕ_{j} is the weak phase which is the necessary
condition for occurring of $C P$ violation on the basis of Cabibbo-Kobayashi-Maskawa (CKM) mechanism $[18,19]$ in the SM. Squaring the matrix element of Eq. (1), one obtains

$$
\begin{align*}
|\mathcal{M}|^{2}= & |a|^{2}\left|\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right|^{2}+\frac{|b|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right)\right|^{2} \\
& +\frac{|c|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta}\right|^{2} \\
& +2 \frac{\operatorname{Re}\left(a b^{*}\right)}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right)\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \\
& +2 \frac{\operatorname{Im}\left(a c^{*}\right)}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right) \epsilon^{\alpha \beta \gamma \delta \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} \\
& +2 \frac{\operatorname{Im}\left(b c^{*}\right)}{m_{1}^{2} m_{2}^{2}}\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} . \tag{3}
\end{align*}
$$

Next, using CPT invariance, the matrix element for the antiparticle decay $\bar{D}(p) \rightarrow \bar{V}_{1}\left(k, \epsilon_{1}\right) \bar{V}_{2}\left(q, \epsilon_{2}\right)$ can be written as

$$
\begin{align*}
& \overline{\mathcal{M}}=\bar{a} \epsilon_{1}^{*} \cdot \epsilon_{2}^{*}+\frac{\bar{b}}{m_{1} m_{2}}\left(p \cdot \epsilon_{1}^{*}\right)\left(p \cdot \epsilon_{2}^{*}\right) \\
&-i \frac{\bar{c}}{m_{1} m_{2}} \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} \tag{4}
\end{align*}
$$

with
$\bar{a}=\sum_{j} a_{j} e^{i \delta_{s j}} e^{-i \phi_{s j}}$,
$\bar{b}=\sum_{j} b_{j} e^{i \delta_{d j}} e^{-i \phi_{d j}}$,
$\bar{c}=\sum_{j} c_{j} e^{i \delta_{p j}} e^{-i \phi_{p j}}$.
Note that CP operator leaves strong phases invariant and only changes the sign of weak phase. From Eqs. (1) and (4), we will find that the p wave amplitude in $\overline{\mathcal{M}}$ changes the sign comparing with \mathcal{M}, which will induce an interesting property between $|\overline{\mathcal{M}}|^{2}$ and $|\mathcal{M}|^{2}$. To be clear, we would square the matrix element for the antiparticle decay in Eq. (4):

$$
\begin{align*}
|\overline{\mathcal{M}}|^{2}= & |\bar{a}|^{2}\left|\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right|^{2}+\frac{|\bar{b}|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right)\right|^{2} \\
& +\frac{|\bar{c}|^{2}}{m_{1}^{2} m_{2}^{2}}\left|\epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta}\right|^{2} \\
& +2 \frac{\operatorname{Re}\left(\bar{a} \bar{b}^{*}\right)}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right)\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \\
& -2 \frac{\operatorname{Im}\left(\bar{a} \bar{c}^{*}\right)}{m_{1} m_{2}}\left(\epsilon_{1}^{*} \cdot \epsilon_{2}^{*}\right) \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} \\
& -2 \frac{\operatorname{Im}\left(\bar{b} \bar{c}^{*}\right)}{m_{1}^{2} m_{2}^{2}}\left(k \cdot \epsilon_{2}^{*}\right)\left(q \cdot \epsilon_{1}^{*}\right) \epsilon^{\alpha \beta \gamma \delta} \epsilon_{1 \alpha}^{*} \epsilon_{2 \beta}^{*} k_{\gamma} p_{\delta} . \tag{6}
\end{align*}
$$

For $D^{0} \rightarrow V_{1} V_{2}$ decay, one can define an asymmetry $\mathcal{A}_{\mathcal{T}}$ with the definite sign for the triple product ($\vec{k} \cdot \epsilon_{1}^{*} \times \epsilon_{2}^{*}$) as [14]
$\mathcal{A}_{\mathcal{T}}=\frac{N\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}>0\right)-N\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}<0\right)}{N_{\text {total }}}$,
where the subscript \mathcal{T} implies triple products and N denotes the corresponding number of events. Eq. (7) above is actually
$\mathcal{A}_{\mathcal{T}}=\frac{\Gamma\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}>0\right)-\Gamma\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}<0\right)}{\Gamma\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}>0\right)+\Gamma\left(\vec{k} \cdot \overrightarrow{\epsilon_{1}^{*}} \times \overrightarrow{\epsilon_{2}^{*}}>0\right.}$.

Similarly, for $\bar{D}^{0} \rightarrow \bar{V}_{1} \bar{V}_{2}$ decay, $\overline{\mathcal{A}}_{\mathcal{T}}$ can also be constructed as the same way. In $|\mathcal{M}|^{2}$, a triple-product correlation arises from interference terms involving the p amplitude, and will be present if $\operatorname{Im}\left(a c^{*}\right)$ (or $\left.\operatorname{Im}\left(b c^{*}\right)\right)$ is non-zero. After a simple calculation by inserting Eqs. (2) and (5), we see that
$\mathcal{A}_{\mathcal{T}} \propto \operatorname{Im}\left(a c^{*}\right)=\sum_{i, j} a_{i} c_{j} \sin \left[\left(\phi_{s i}-\phi_{p j}\right)+\left(\delta_{s i}-\delta_{p j}\right)\right]$.
Note that a non-zero triple correlation does not necessarily imply $C P$ violation, since final state interactions (FSI) can fake it, namely the strong phase can also produce non-zero $\mathcal{A}_{\mathcal{T}}$ (or $\overline{\mathcal{A}}_{\mathcal{T}}$) even the weak phases are zero. Yet comparing a triple correlation for $C P$ conjugate transitions allows to distinguish genuine $C P$ violation from FSI effects. Thus we obtain

$$
\begin{align*}
& \frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}+\overline{\mathcal{A}}_{\mathcal{T}}\right) \propto \frac{1}{2}\left[\operatorname{Im}\left(a c^{*}\right)-\operatorname{Im}\left(\bar{a} \bar{c}^{*}\right)\right] \\
& \quad=\sum_{i, j} a_{i} c_{j} \sin \left(\phi_{s i}-\phi_{p j}\right) \cos \left(\delta_{s i}-\delta_{p j}\right), \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}-\overline{\mathcal{A}}_{\mathcal{T}}\right) \propto \frac{1}{2}\left[\operatorname{Im}\left(a c^{*}\right)+\operatorname{Im}\left(\bar{a} \bar{c}^{*}\right)\right] \\
& \quad=\sum_{i, j} a_{i} c_{j} \cos \left(\phi_{s i}-\phi_{p j}\right) \sin \left(\delta_{s i}-\delta_{p j}\right) . \tag{11}
\end{align*}
$$

So far, a non-zero value $\mathcal{A}_{\mathcal{T}}+\overline{\mathcal{A}}_{\mathcal{T}}$ will be undoubtedly a clean signal of $C P$ non-conservation, because there must be at least one non-zero weak phase ϕ. Here, we also note that if there is only one amplitude contributing to each partial wave, one can simultaneously determine the strong phase difference and weak phase difference from Eqs. (10) and (11).

Experimentally, one can perform a full angular analysis to obtain the above TP asymmetry information because the complex coefficients a, b, c are related to the helicity amplitudes $A_{0}, A_{\|}$, A_{\perp} as discussed in Refs. [16,20],
$A_{0}=-a x-b\left(x^{2}-1\right)$,
$A_{\|}=\sqrt{2} a$,
$A_{\perp}=\sqrt{2} c \sqrt{x^{2}-1}$,
where
$x=\frac{k \cdot q}{m_{1} m_{2}}=\frac{m_{D}^{2}-m_{1}^{2}-m_{2}^{2}}{2 m_{1} m_{2}}$,
where m_{D} is the mass of D meson.
Now we turn to the full angular dependence of process $D \rightarrow$ $V_{1} V_{2} \rightarrow\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)$ with P pseudoscalar, after some algebra one can get

$$
\begin{align*}
\frac{d \Gamma}{d \cos \theta_{1} d \cos \theta_{2} d \phi} \propto & \frac{1}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos ^{2} \phi\left|A_{\|}\right|^{2} \\
& +\frac{1}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin ^{2} \phi\left|A_{\perp}\right|^{2} \\
& +\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}\left|A_{0}\right|^{2} \\
& -\frac{1}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi \operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right) \\
& -\frac{\sqrt{2}}{4} \sin 2 \theta_{1} \sin 2 \theta_{2} \cos \phi \operatorname{Re}\left(A_{\|} A_{0}^{*}\right) \\
& +\frac{\sqrt{2}}{4} \sin 2 \theta_{1} \sin 2 \theta_{2} \sin \phi \operatorname{Im}\left(A_{\perp} A_{0}^{*}\right), \tag{14}
\end{align*}
$$

Fig. 1. Illustrative plot for the decay kinematics of process $D \rightarrow V_{1} V_{2} \rightarrow$ $\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)$ in the rest frame of $V_{1,2}$.
where we have introduced A_{\perp} with definite odd $C P$ eigenvalue and the $C P$ even partners $A_{0}, A_{\|}$via
$A_{0}=A_{0}$,
$A_{\|}=\frac{1}{\sqrt{2}}\left(A_{11}+A_{-1-1}\right)$,
$A_{\perp}=\frac{1}{\sqrt{2}}\left(A_{11}-A_{-1-1}\right)$,
with $A_{\lambda_{1} \lambda_{2}}$ denoting the helicity mode of two vector mesons. θ_{i} 's ($i=1,2$) are the angles between the direction of motion of one of the $V_{1,2} \rightarrow P P$ pseudoscalar final states and the inverse direction of motion of the D meson as measured in the $V_{1,2}$ rest frame, ϕ is the angle between the two decay plane of vector mesons in the D rest frame. Fig. 1 illustrates the decay kinematics of the process $D \rightarrow V_{1} V_{2} \rightarrow\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)$ in the rest frame of $V_{1,2}$. Eq. (14) is consistent with that from Refs. [21,22].

As discussed previously, the TP asymmetry is connected with the angular dependence, combining Eqs. (10)-(12), one can define the following T-odd quantities [14,15],
$\mathcal{A}_{\mathcal{T}}^{0} \equiv \frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}$,
and
$\mathcal{A}_{\mathcal{T}}^{\|} \equiv \frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}$,
thus we will derive the $C P$ violating observables,

$$
\begin{align*}
\mathcal{A} & =\frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}^{0}+\overline{\mathcal{A}}_{\mathcal{T}}^{0}\right) \\
& =\frac{1}{2}\left(\frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}+\frac{\operatorname{Im}\left(\bar{A}_{\perp} \bar{A}_{0}^{*}\right)}{\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}}\right), \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{A}^{\prime} & =\frac{1}{2}\left(\mathcal{A}_{\mathcal{T}}^{\|}+\overline{\mathcal{A}}_{\mathcal{T}}^{\|}\right) \\
& =\frac{1}{2}\left(\frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right)}{\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}+\frac{\operatorname{Im}\left(\bar{A}_{\perp} \bar{A}_{\|}^{*}\right)}{\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}}\right) . \tag{19}
\end{align*}
$$

Before this study, there had been attempts to study $C P$ violation of D meson via T violating TP correlation in theoretical viewpoint that differs from our method [12,23,24]. But the only reported experimental search for T-odd asymmetries is from FOCUS in the $D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$and $D_{S}^{+} \rightarrow K_{S} K^{+} \pi^{+} \pi^{-}$decay modes [25], as listed in Table 1. No evidence for a T asymmetry is observed. The large BES-III data sample is expected to provide enhanced sensitivity to possible T violating asymmetries.

At last, we consider the potential sensitivity on the $C P$ violating observables \mathcal{A} and \mathcal{A}^{\prime} at BES-III. From Eq. (7), for a small asymmetry, there is a general result that it's error is approximately estimated as $1 / \sqrt{N_{\text {total }}}$, where $N_{\text {total }}$ is the total number of events

Table 1
T violating asymmetries in D meson decays from the FOCUS experiment [25].

Decay mode	$\mathcal{A}(\%)$
$D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}$	$1.0 \pm 5.7 \pm 3.7$
$D^{+} \rightarrow K_{S} K^{+} \pi^{+} \pi^{-}$	$2.3 \pm 6.2 \pm 2.2$
$D_{S}^{+} \rightarrow K_{S} K^{+} \pi^{+} \pi^{-}$	$-3.6 \pm 6.7 \pm 2.3$

Table 2
The promising ($V V$) modes with large branching fractions, efficiencies and expected errors on the T asymmetry: the corresponding expected errors are estimated by assuming $20 \mathrm{fb}^{-1}$ data at $\psi(3770)$ peak at BES-III; the branching fractions with asterisk are estimated according to Refs. [29-32]. The last row is from D^{+}decay.

$V V$	$\operatorname{Br}(\%)$	Eff. (ϵ)	Expected errors
$\rho^{0} \rho^{0} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(\pi^{+} \pi^{-}\right)$	0.18	0.74	0.004
$\bar{K}^{* 0} \rho^{0} \rightarrow\left(K^{-} \pi^{+}\right)\left(\pi^{+} \pi^{-}\right)$	1.08	0.68	0.002
$\rho^{0} \phi \rightarrow\left(\pi^{+} \pi^{-}\right)\left(K^{+} K^{-}\right)$	0.14	0.26	0.006
$\rho^{+} \rho^{-} \rightarrow\left(\pi^{+} \pi^{0}\right)\left(\pi^{-} \pi^{0}\right)$	0.6^{*}	0.55	0.002
$K^{*+} K^{*-} \rightarrow\left(K^{+} \pi^{0}\right)\left(K^{-} \pi^{0}\right)$	0.08^{*}	0.55	0.006
$K^{* 0} \bar{K}^{* 0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$	0.048	0.62	0.002
$\bar{K}^{* 0} \rho^{+} \rightarrow\left(K^{-} \pi^{+}\right)\left(\pi^{+} \pi^{0}\right)$	1.33	0.59	0.001

observed. At BES-III, with an integrated luminosity of $20 \mathrm{fb}^{-1}$ at $\psi(3770)$ peak, about $72 \times 10^{6} D^{0} \bar{D}^{0}$ pairs will be collected with four year's running [26,27]. Table 2 lists some promising channels to search for T asymmetry for both neutral and charged D decays and the corresponding expected statistical errors are estimated. The projected efficiencies are extracted from Ref. [26] and branching ratios are obtained from Ref. [28].

In Table 2, the branching fractions with asterisks have not been measured yet, but some estimates combining naive factorization and models for FSI are available from Refs. [29-32]. Note that in Table 2, the estimated efficiencies are average value for the various partial waves by assuming that the magnitude of the longitudinal polarization is half of the decay rate. In the future, a careful measurements at BES-III about the efficiency and fraction for each partial wave are suggested. A more realistic analysis requires a likelihood fit to the full angular dependence of the $D \rightarrow V_{1} V_{2} \rightarrow\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)$ mode. Systematics will arise from the mis-reconstruction as $V_{1} V_{2}$ of the events that actually come from other resonances or non-resonance $D \rightarrow P_{1} P_{2} P_{3} P_{4}$ background contributions. In view of the sizable width of the vector resonances, we expect that these systematics will dominate the final result. Their precise estimate in the BES-III experiment is beyond the scope of this Letter. However, as pointed out in Ref. [24] by Bigi, the four-body decay of $D \rightarrow P_{1} P_{2} P_{3} P_{4}$ both with and without intermediate states can all be used to probe T asymmetry in the frame work of TP.

In conclusion, we studied the $C P$ violation in $D \rightarrow V V$ decay mode in which the T violating triple-product correlation is examined. That would undoubtedly be another excellent probe of New Physics beyond the SM. The CP violating observables in connection with angular distribution are constructed. For neutral D decays, we neglect the $C P$ violation induced by $D^{0}-\bar{D}^{0}$ oscillation. Experimentally, by doing a full angular analysis one may obtain such $C P$ violating signals, and particularly it is worth mentioning that the upcoming large D data sample at BES-III will provide a great opportunity to perform it. The sensitivities for $C P$ violating observables are estimated by assuming $20^{-1} \mathrm{fb}$ data-taking at $\psi(3770)$ peak at BES-III.

Acknowledgements

One of the authors, X.-W. Kang, wishes to thank Rong-Gang Ping for the help of drawing tools, Professor Z.z. Xing for many
valuable suggestions, and especially Professor G. Valencia for stimulating discussions through mail. This work is supported in part by the National Natural Science Foundation of China under contract Nos. 10521003, 10821063, 10835001, 10979008, the National Key Basic Research Program (973 by MOST) under contract No. 2009CB825200, Knowledge Innovation Key Project of Chinese Academy of Sciences under contract No. KJCX2-YW-N29, the 100 Talents program of CAS, and the Knowledge Innovation Project of CAS under contract Nos. U-612 and U-530 (IHEP).

References

[1] E.M. Aitala, et al., E791 Collaboration, Phys. Lett. B 403 (1997) 377, arXiv:hepex/9612005.
[2] F. Buccella, M. Lusignoli, G. Mangano, G. Miele, A. Pugliese, P. Santorelli, Phys. Lett. B 302 (1993) 319, arXiv:hep-ph/9212253.
[3] B. Aubert, et al., BABAR Collaboration, Phys. Rev. D 78 (2008) 051102, arXiv:0802.4035 [hep-ex].
[4] G. Boca, et al., Focus Collaboration, AIP Conf. Proc. 717 (2004) 576, also in: Hadron Spectroscopy, Aschaffenburg, 2003, pp. 576-580.
[5] D. Cronin-Hennessy, et al., CLEO Collaboration, arXiv:hep-ex/0102006.
[6] M. Nandy, V.P. Gautam, Czech. J. Phys. 46 (1996) 905.
[7] Z.z. Xing, Phys. Rev. D 55 (1997) 196, arXiv:hep-ph/9606422.
[8] A. Le Yaouanc, L. Oliver, J.-C. Raynal, Phys. Lett. B 292 (1992) 353.
[9] S.L. Alder, D.s. Du, Phys. Rev. D 35 (1987) 2252.
[10] G.L. Kane, G. Senjanovic, Phys. Rev. D 25 (1982) 173.
[11] V.A. Monich, B.V. Struminsky, G.G. Volkov, Sov. J. Nucl. Phys. 34 (1981) 245; V.A. Monich, B.V. Struminsky, G.G. Volkov, Yad. Fiz. 34 (1981) 435.
[12] J.G. Körner, K. Schilcher, Y.L. Wu, Z. Phys. C 55 (1992) 479.
[13] J. Charles, S. Descotes-Genon, X.W. Kang, H.B. Li, G.R. Lu, arXiv:0912.0899 [hepph].
[14] G. Valencia, Phys. Rev. D 39 (1989) 3339.
[15] A. Datta, D. London, Int. J. Mod. A 19 (2004) 2505.
[16] G. Kramer, W.F. Palmer, Phys. Rev. D 45 (1992) 193; G. Kramer, W.F. Palmer, Phys. Lett. B 279 (1992) 181; G. Kramer, W.F. Palmer, Phys. Rev. D 46 (1992) 3197.
[17] B. Tseng, C.W. Chiang, hep-ph/9905338.
[18] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.
[19] M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.
[20] A.S. Dighe, I. Dunietz, H.J. Lipkin, J.L. Rosner, Phys. Lett. B 369 (1996) 144.
[21] J.G. Körner, G.R. Goldstein, Phys. Lett. B 89 (1979) 105.
[22] M. Beneke, J. Rohrer, D.s. Yang, Nucl. Phys. B 774 (2007) 64.
[23] S. Bianco, F.L. Fabbri, D. Benson, I. Bigi, Riv. Nuov. Cim. 26 (2003) 7.
[24] I.I. Bigi, CP violation in the SM, quantum subtleties and the insights of Yogi Berra, hep-ph/0703132.
[25] J.M. Link, et al., FOCUS collaboration, Phys. Lett. B 622 (2005) 239.
[26] BESIII Collaboration, The preliminary design report of the BESIII detector, Report No. IHEP-BEPCII-SB-13.
[27] D.M. Asner, et al., in: K.T. Chao, Y.F. Wang (Eds.), Physics at BES-III, Int. J. Mod. Phys. A 24 (Suppl. 1) (2009) 5.
[28] C. Amsler, et al., Particle Data Group, Phys. Lett. B 667 (2008) 1.
[29] T. Uppal, R.C. Verma, Z. Phys. C 56 (1992) 273.
[30] A.N. Kamal, R.C. Verma, N. Sinha, Phys. Rev. D 43 (1991) 843.
[31] P. Bedaque, A. Das, V.S. Mathur, Phys. Rev. D 49 (1994) 269.
[32] I. Hinchliffe, T.A. Kaeding, Phys. Rev. D 54 (1996) 914.

[^0]: * Corresponding author at: Institute of High Energy Physics, PO Box 918, Beijing 100049, China.

 E-mail addresses: kangxw@ihep.ac.cn (X.-W. Kang), lihb@ihep.ac.cn (H.-B. Li).

