56 research outputs found

    Simulation of multiangular remote sensing products using small satellite formations

    No full text
    To completely capture the multiangular reflectance of an opaque surface, one must estimate the bidirectional reflectance distribution function (BRDF), which seeks to represent variations in surface reflectance as a function of measurement and illumination angles at any time instant. The gap in angular sampling abilities of existing single satellites in Earth observation missions can be complemented by small satellites in formation flight. The formation would have intercalibrated spectrometer payloads making reflectance measurements, at many zenith and azimuthal angles simultaneously. We use a systems engineering tool coupled with a science evaluation tool to demonstrate the performance impact and mission feasibility. Formation designs are generated and compared to each other and multisensor single spacecraft, in terms of estimation error of BRDF and its dependent products such as albedo, light use efficiency (LUE), and normalized difference vegetation index (NDVI). Performance is benchmarked with respect to data from previous airborne campaigns (NASA's Cloud Absorption Radiometer), and tower measurements (AMSPEC II), and assuming known BRDF models. Simulations show that a formation of six small satellites produces lesser average error (21.82%) than larger single spacecraft (23.2%), purely in terms of angular sampling benefits. The average monolithic albedo error of 3.6% is outperformed by a formation of three satellites (1.86%), when arranged optimally and by a formation of seven to eight satellites when arranged in any way. An eight-satellite formation reduces albedo errors to 0.67% and LUE errors from 89.77% (monolithic) to 78.69%. The average NDVI for an eight satellite, nominally maintained formation is better than the monolithic 0.038

    Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Get PDF
    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight

    Atmospheric Chemistry Over Southern Africa

    Get PDF
    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field campaigns such as Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE-A), Southern African Fire-Atmosphere Research Initiative (SAFARI-92), and Southern African Regional Science Initiative (SAFARI 2000). Since those large international efforts, satellites have matured enough to enable quantifiable measurements of regional land surface, atmosphere, and ocean. In addition, global and chemical transport models have also been advanced to incorporate various data. Thus, the timing of the workshop was right for a full-fledged re-assessment of the chemistry, physics, and socio-economical impacts caused by pollution in the region, including a characterization of sources, deposition, and feedbacks with climate change

    Developing an Aircraft-Based Angular Distribution Model of Solar Reflection from Wildfire Smoke to Aid Satellite-Based Radiative Flux Estimation

    Get PDF
    This study examines the angular distribution of scattered solar radiation associated with wildfire smoke aerosols observed over boreal forests in Canada during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) campaign. First, it estimates smoke radiative parameters (550 nm optical depth of 3.9 and single scattering albedo of 0.90) using quasi-simultaneous multiangular and multispectral airborne measurements by the Cloud Absorption Radiometer (CAR). Next, the paper estimates the broadband top-of-atmosphere radiances that a satellite instrument such as the Clouds and the Earths Radiant Energy System (CERES) could have observed, given the narrowband CAR measurements made from an aircraft circling about a kilometer above the smoke layer. This estimation includes both an atmospheric correction that accounts for the atmosphere above the aircraft and a narrowband-to-broadband conversion. The angular distribution of estimated radiances is found to be substantially different than the angular model used in the operational data processing of CERES observations over the same area. This is because the CERES model is a monthly average model that was constructed using observations taken under smoke-free conditions. Finally, a sensitivity analysis shows that the estimated angular distribution remains accurate for a fairly wide range of smoke and underlying surface parameters. Overall, results from this work suggest that airborne CAR measurements can bring some substantial improvements in the accuracy of satellite-based radiative flux estimates

    BRDF of Salt Pan Regolith Samples

    Get PDF
    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported

    Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    Get PDF
    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported

    Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    Get PDF
    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure

    The 2011 Eco3D Flight Campaign: Vegetation Structure and Biomass Estimation from Simultaneous SAR, Lidar and Radiometer Measurements

    Get PDF
    The Eco3D campaign was conducted in the Summer of 2011. As part of the campaign three unique and innovative NASA Goddard Space Flight Center airborne sensors were flown simultaneously: The Digital Beamforming Synthetic Aperture Radar (DBSAR), the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Cloud Absorption Radiometer (CAR). The campaign covered sites from Quebec to Southern Florida and thereby acquired data over forests ranging from Boreal to tropical wetlands. This paper describes the instruments and sites covered and presents the first images resulting from the campaign

    Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-based Estimates of Surface Albedo

    Get PDF
    The quantification of uncertainty of global surface albedo data and products is a critical part of producing complete, physically consistent, and decadal land property data records for studying ecosystem change. A current challenge in validating satellite retrievals of surface albedo is the ability to overcome the spatial scaling errors that can contribute on the order of 20% disagreement between satellite and field-measured values. Here, we present the results from an uncertain ty analysis of MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat albedo retrievals, based on collocated comparisons with tower and airborne multi-angular measurements collected at the Atmospheric Radiation Measurement Program s (ARM) Cloud and Radiation Testbed (CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLAS33 IC 07). Using standard error propagation techniques, airborne measurements obtained by NASA s Cloud Absorption Radiometer (CAR) were used to quantify the uncertainties associated with MODIS and Landsat albedos across a broad range of mixed vegetation and structural types. Initial focus was on evaluating inter-sensor consistency through assessments of temporal stability, as well as examining the overall performance of satellite-derived albedos obtained at all diurnal solar zenith angles. In general, the accuracy of the MODIS and Landsat albedos remained under a 10% margin of error in the SW(0.3 - 5.0 m) domain. However, results reveal a high degree of variability in the RMSE (root mean square error) and bias of albedos in both the visible (0.3 - 0.7 m) and near-infrared (0.3 - 5.0 m) broadband channels; where, in some cases, retrieval uncertainties were found to be in excess of 20%. For the period of CLASIC 07, the primary factors that contributed to uncertainties in the satellite-derived albedo values include: (1) the assumption of temporal stability in the retrieval of 500 m MODIS BRDF values over extended periods of cloud-contaminated observations; and (2) the assumption of spatial 45 and structural uniformity at the Landsat (30 m) pixel scale

    NASA's SnowEx Campaign and Measuring Global Snow from Space

    Get PDF
    Snow blankets 30% of Earth's land surface (60% of northern hemisphere land) in midwinter, dramatically changing our planet's land surface and affecting our weather for months. Seasonal snow is critically important to society for the management of water resources, natural hazards, water security, and in many economic sectors. The only practical way to estimate the quantity of snow on a global scale is through satellites. Despite 4 decades of satellite observations, the highly variable nature of snow still presents significant challenges toward achieving this goal. For example, current space-based techniques underestimate snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly versus estimates based on remotely-sensed observations. Snow community consensus is that a multi-sensor approach is needed to adequately address global snow, combined with modeling and data assimilation to fill the gaps in space and time. What remains, then, is how best to combine and use the various sensors under different types of snow conditions and confounding factors. NASA's multi-year SnowEx airborne campaign is designed to collect measurements needed to enable algorithm development and to guide those mission trade studies. Year 1 (2017) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. This paper will discuss the various remote sensing options for snow, the challenging factors, and describe the recently-completed first year of SnowEx in Colorado, USA. Ground-based remote sensing and in situ data collection involved nearly 100 participants over three weeks. The airborne campaign included nine sensors on five aircraft. We will conclude by discussing options for a future snow satellite mission
    • …
    corecore