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Abstract –23

The quantification of uncertainty of global surface albedo data and products is a critical part24

of producing complete, physically consistent, and decadal land property data records for studying25

ecosystem change. A current challenge in validating satellite retrievals of surface albedo is the26

ability to overcome the spatial scaling errors that can contribute on the order of 20% disagree-27

ment between satellite and field-measured values. Here, we present the results from an uncertain-28

ty analysis of MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat albedo29

retrievals, based on collocated comparisons with tower and airborne multiangular measurements30

collected at the Atmospheric Radiation Measurement Program’s (ARM) Cloud and Radiation31

Testbed (CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLAS-32

IC’07). Using standard error propagation techniques, airborne measurements obtained by33

NASA’s Cloud Absorption Radiometer (CAR) were used to quantify the uncertainties associated34

with MODIS and Landsat albedos across a broad range of mixed vegetation and structural types.35

Initial focus was on evaluating inter-sensor consistency through assessments of temporal stabili-36

ty, as well as examining the overall performance of satellite-derived albedos obtained at all diur-37

nal solar zenith angles. In general, the accuracy of the MODIS and Landsat albedos remained38

under a 10% margin of error in the SW (0.3 - 5.0 µm) domain. However, results reveal a high39

degree of variability in the RMSE (root mean square error) and bias of albedos in both the visible40

(0.3 - 0.7 µm) and near-infrared (0.3 - 5.0 µm) broadband channels; where, in some cases, re-41

trieval uncertainties were found to be in excess of 20%. For the period of CLASIC’07, the prima-42

ry factors that contributed to uncertainties in the satellite-derived albedo values include: (1) the43

assumption of temporal stability in the retrieval of 500 m MODIS BRDF values over extended44



periods of cloud-contaminated observations; and (2) the assumption of spatial and structural un-45

iformity at the Landsat (30 m) pixel scale.46

1. Background47

A major goal of international Earth observation efforts is the long term monitoring of terre-48

strial essential climate variables and the production of consistent land surface radiation parame-49

ters for rigorous modeling studies. With the advent of a new generation of multi-sensor data and50

products for Land science applications, recent efforts have explored the “MODISization” of na-51

dir-looking satellite sensors to obtain high-resolution (30 m) MODIS-driven land surface para-52

meters (Gao et al. 2006; Roy et al. 2008). For example, (Shuai et al. 2011) combined both Land-53

sat reflectance (Masek et al. 2006) and high quality 500 m MODIS BRDF (Bidirectional Reflec-54

tance Distribution Function) parameters (Lucht et al. 2000; Schaaf et al. 2002; Schaaf et al.55

2008) to retrieve 30 m resolution estimates of surface albedo. By capturing seasonal trends at the56

characteristic scale of vegetation change (~1 ha), these approaches have the potential to improve57

our understanding of the climate consequences of global land cover change and ecosystem dis-58

turbance (Barnes and Roy 2008; Masek et al. 2008). .59

The quantification of uncertainty of global surface albedo data and products from both60

MODIS and Landsat satellites is a critical part of producing complete, physically consistent,61

global, and decadal land property data records. The MODIS BRDF/albedo standard product,62

available globally since 2000 at resolutions from 0.5 to 5 km, has been validated to Committee63

on Earth Observation Satellites (CEOS) Stage 2 (i.e., over a widely distributed set of locations64

and time periods via several ground-truth and validation efforts). This validation stage is a pre-65



requisite for any data product that is used for monitoring change over time (Morisette et al.66

2002). The high-quality primary algorithm for the MODIS standard albedo product (MCD43)67

has also been shown to produce consistent global quantities over a variety of land surface types68

and snow-covered conditions (Jin et al. 2003a; Jin et al. 2003b; Salomon et al. 2006; Liu et al.69

2009; Román et al. 2009; Román et al. 2010; Wang et al. 2011). On the other hand, the combined70

MODIS/Landsat albedo product (hereby termed ‘Landsat albedo’), which is based on per-class71

MODIS BRDF shapes based on uniform land cover characteristics, has been shown to provide a72

more detailed landscape texture and achieve good agreement with in-situ data over a limited73

number of field stations (Shuai et al. 2011). Additional assessments over a wide range of spatial74

(from 10s of meters to 5-30 km) and temporal scales (from daily to monthly) are nonetheless re-75

quired to accurately provide end users with a pixel-specific measure of product uncertainty –76

both in terms of retrieval quality (e.g. given a limited number of cloud-free satellite observations)77

and their ability to capture albedo trends under conditions of seasonal and/or rapid surface78

change.79

A current challenge in validating satellite albedo retrievals is the ability to overcome the spa-80

tial scaling errors that contribute disagreement between satellite and field-measured values,81

which can be on the order of 20% (Jin et al. 2003b; Salomon et al. 2006; Liu et al. 2009; Román82

et al. 2010). Recent studies have acquired measurements atop tall (> 400 m) towers to properly83

“scale-up” to satellite measurements (Augustine et al. 2005; Román et al. 2009). Other efforts84

have used high resolution imagery to consider the spatial representativeness of the tower obser-85

vation footprint to the MODIS pixel (Susaki et al. 2007; Román et al. 2009). While these me-86

thods provide a good means by which direct “point-to-pixel” assessments can be performed with87



high confidence; they present their own set challenges (e.g., in the United States, instruments88

atop tall towers cannot be left operating year-round, due to heavy icing and bad weather). On ac-89

count of the uncertainties arising from direct comparison between sparsely sampled in situ mea-90

surements and their corresponding satellite products, a formal assessment has yet to be carried91

out to characterize the ability of the MODIS and Landsat data to capture diurnal trends in albedo92

across spatially heterogeneous environments. To address these issues, we present the results from93

an uncertainty quantification of MODIS and Landsat albedo retrievals based on collocated com-94

parisons with tower and airborne measurements. For the airborne datasets, we have employed the95

retrieval scheme presented in Román et al. (2011a), which follows the operational sequence used96

to retrieve the MODIS surface reflectance and BRDF/albedo products, based on high-quality97

multiangular reflectance measurements obtained by NASA’s Cloud Absorption Radiometer98

(CAR) (King et al. 1986; Gatebe et al. 2003). This study focuses on CAR retrievals obtained99

over the Atmospheric Radiation Measurement Program’s (ARM) Cloud and Radiation Testbed100

(CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC’07) (Bin-101

dlish et al. 2009; Heathman et al. 2009).102

2. Albedo retrieval strategy103

In this section, we briefly review the albedo retrieval methods used by the MODIS, Landsat,104

and CAR instruments, and assess the calibration performance of the CAR spectral channels dur-105

ing the period of CLASIC’07. Readers are referred to Sections 2 and 3 in Román et al. (2011a)106

for detailed descriptions of the CLASIC’07 experiment (including retrieval of CAR and MODIS107



BRDF/albedo datasets); and Section 2 in Shuai et al. (2011) for a complete description of the108

Landsat albedo retrieval strategy.109

2.1 Instantaneous albedos from CAR, MODIS, and Landsat110

The CAR, MODIS, and Landsat albedo retrieval schemes employ the BRDF kernel model111

parameters from the reciprocal version of the semiempirical RossThick-LiSparse model112

(RTLSR) (Wanner et al. 1995; 1997; Lucht et al. 2000):113

, , ,( , ) ( , ) ( , )v s iso vol vol v s geo geo v sR f f K f K            (1)114

Here, v and s are the viewing and solar geometries, which are each defined by zenith and azi-115

muthal angles (,). Kvol is the coefficient for the RossThick volume scattering kernel (Ross116

1981); Kgeo is the coefficient of the LiSparse-Reciprocal geometric scattering kernel (Li and117

Strahler 1992); and fx, are the RTLSR kernel weights x in waveband  with limits min max[ , ] 118

(Wanner et al. 1995; Lucht et al. 2000). The RTLSR kernel weights are then used to compute in-119

trinsic surface albedos (i.e., black sky albedo for direct beam at local solar noon and white sky120

albedo for isotropic diffuse radiation) (Martonchik et al. 2000; Schaepman-Strub et al. 2006):121
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where,     BRDFR iv , (unitless), is the ratio of the surface BRDF to that of a perfect125

Lambertian reflector, which can be approximated by measurement over some (small) finite angle126

with diffuse illumination and multiple interaction effects accounted for or assumed zero (Lyapus-127

tin and Privette 1999). Subscripts v and i denote the upper ‘viewing’ and ‘incident’ hemispheres.128

( )sR  is the black-sky albedo, R is white-sky albedo,  vvolK  and  vgeoK  are the direc-129

tional-hemispherical integrals, and  vvolK  and  vgeoK  are the bihemispherical integrals of130

Kvol and Kgeo. Other terms in Eq. (2) and (3) are:131

  iorvyyy  ;cos (4)132

To accurately compare these intrinsic quantities against ground-based albedos, the black-sky and133

white-sky albedos must be combined as a function of solar geometry and atmospheric state to134

compute instantaneous albedo under assumptions of isotropic diffuse illumination:135
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where D0
(unitless) is the proportion of diffuse illumination for an absorbing lower boundary137

(Lewis and Barnsley 1994; Lucht et al. 2000). The MODIS BRDF shape derived from clear-sky138

observations can then be used to derive albedo values in all sky conditions (Liu et al. 2009).139

Most recently, the computation of MODIS instantaneous albedos was updated to account for the140

effects of multiple scattering and anisotropic diffuse illumination (Román et al. 2010):141
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where, ( )sky iN   is the normalized sky radiance distribution under an absorbing lower boundary146

and xK  is the Nsky-weighted bihemispherical integral of ( , )x v sK   (where x = vol or geo).147

Intrinsic albedo quantities derived from RTLSR BRDF model inversions can then be combined148

with in-situ estimates of cloud fraction (< 0.6), 550 nm aerosol optical depth (AOD), solar zenith149

angle (SZA), and D0
to compute clear-sky instantaneous albedos from MODIS, Landsat, and150

CAR data.151

The kernel-driven models employed by the MODIS and Landsat albedo products are also152

identified as part of the heritage algorithms used to generate the Visible Infrared Imager Radi-153

ometer Suite’s (VIIRS) Land Environmental Data Records (EDRs); which aim to ensure continu-154

ity for AVHRR and MODIS observations by providing high temporal resolution and wide area155

coverage (Lee et al. 2010). The VIIRS Land EDRs are currently being evaluated by NASA and156

NOAA to assess their suitability for operational weather forecasting and long-term climate moni-157

toring applications (Román et al. 2011b).158



2.2 Narrowband to Broadband Conversion159

Since field-measured albedos are commonly measured as broadband quantities, an equiva-160

lent set of broadband albedos for MODIS and Landsat were generated for the UV-Visible (0.3 -161

0.7 µm), NIR (0.7 - 5.0 µm), and the entire spectrum of solar radiation ([SW] 0.3 - 5.0 µm),162

based on empirical relations between ground-based albedo measurements and satellite observa-163

tions – cf., Eqs. (11) and (15) in Liang (2001). Broadband albedos were also derived for CAR164

measurements by calculating the ratio of broadband upwelling radiative flux to broadband165

downwelling flux (Liang 2001; Liang et al. 2003):166
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Then, CAR narrowband-to-broadband spectral albedo coefficients, ci, were generated for each168

spectral band by determining the downward fluxes (i.e. direct and diffuse) using an library of 30169

reflectance spectra of representative land covers in the ARM Southern Great Plains (SGP) region170

(Trishenko et al. 2003):171

0015.0081.0112.0116.0243.0291.0160.0 754321  shortA (11)172

7654321 101.0069.0252.0105.0071.0504.0039.0  NIRA (12)173

431 246.0424.0331.0  visibleA (13)174



The upward fluxes were directly obtained from the library of 30 SGP reflectance spectra; while175

the downward fluxes were obtained by performing multiple MODTRAN®5.1 (Berk et al. 2004)176

runs for a broad range of snow-free conditions (i.e., 21 atmospheric visibility values for different177

aerosol loadings, 2 atmospheric profiles, and solar zenith angles ranging from 0° - 80° with the178

increment of 1°).179

2.3 CAR instrument performance during CLASIC’07180

During the CLASIC’07 experiment, radiometric calibration of the CAR spectral channels181

was made at the NASA Goddard Space Flight Center Radiometric Calibration Facility (GSFC-182

RCF) (Butler and Barnes 2003). A description of the calibration scheme, using a series of inte-183

grating spheres with diameters of 1.83 m, 1.22 m, and 0.51 m, covering all of the CAR’s spectral184

channels, can be found in Gatebe et al. (2007). The conversion from Digital Numbers (DNs) to185

Level 1 at-sensor radiances is determined from the instrument’s response for at least two known186

radiance levels and then determining the instrument gain (slope) and offset (intercept) for each187

wavelength across the sensor band pass. The estimated errors associated with this radiometric188

conversion vary from ±1% to ±3% for all spectral channels (Gatebe et al. 2003; Gatebe et al.189

2007). Radiometric calibration was performed prior to and after CLASIC’07. In the past, to de-190

termine a suitable calibration for a given flight during the experiment, a linear change between191

the preflight and postflight calibration was assumed as a function of only the number of flights192

flown during an entire campaign. For the CLASIC’07 experiment, however, both the pre- and193

post-calibration coefficients were averaged. This was found to be representative of each flight194

scenario, and made it easier to account for uncertainties related to calibration, stability, and wa-195



velength errors. We note that the calibration ratios, postflight-to-preflight, varied between 0.9691196

(at  = 0.472 μm) and 1.1845 (at  = 0.340 μm).197

Table 1. Remotely-sensed albedo retrieval scenarios obtained during CLASIC’07 for MODIS,198
Landsat, CAR in medium resolution mode (MRM), and CAR in coarse resolution mode (CRM).199

Instrument GIFOV (m) Scale (m)
BRDF Retrieval Period

(DOY)
Albedo Reconstruction Period

(DOY)
MODIS

Terra/Aqua
436 – 1686 500 145-193 153-155; 159-190

Landsat TM 30 30 153-168 153-155

CAR-MRM 15 – 45 30 175 153-155

CAR-CRM 90 - 360 250 175 159-190

200

3. Retrieval scenarios during CLASIC’07201

Table 1 provides a summary of the individual BRDF retrieval and albedo reconstruction pe-202

riods for CAR, MODIS, and Landsat. Note that the retrieval scenarios varied by sensor. For in-203

stance, Landsat albedos were reconstructed for a short time period (Day of the year, DOY 153-204

155) to better represent the per-class albedo-to-nadir-reflectance (A/N) ratios derived from the 205

concurrent MODIS acquisition period. Conversely, the CAR albedos are based on two different206

modes: a Medium Resolution Mode (CAR-MRM) to match the scale of Landsat data; and a207

Coarse Resolution Mode (CAR-CRM) to match the scale of MODIS data (cf., Fig. 9 in Román et208

al. 2011a). The CAR measurements are based on CLASIC Flight #1928 (DOY 175, 2007). Ac-209

cordingly, a longer measurement period was also examined (i.e., DOY 159-190) to evaluate the210

ability of the CAR and MODIS data to represent the landscape conditions surrounding the entire211

CLASIC’07 period.212

213



214

Fig. 1. (a. – h.) 2 km x 2 km subsets illustrating retrievals of white-sky albedo (WSA) and broad-215
band NDVI. The Broadband NDVI values are based on the UV-VIS and NIR portions of the solar216
spectrum: NDVI = (WSANIR - WSAVIS) / (WSANIR + WSAVIS). (i.) IKONOS true-color scene, re-217
trieved on 1 July 2007, denotes the ~960 m ground footprint as seen by the downward-facing pyra-218
nometer atop the CART site’s 60 m radiation tower. (j.) Spatially-integrated albedos for CAR,219
Landsat, and MODIS, were computed based on a 2D Gaussian filter representing the tower foot-220
print.221



222
Fig. 2. Comparisons of intrinsic white-sky albedos derived from Landsat, CAR, and MODIS data223
shown for individual land cover types present across the ARM CART during CLASIC’07. Results224
were partitioned into broadband albedos based on the UV-Visible (0.3 - 0.7 µm), NIR (0.7 - 5.0 µm),225
and the entire spectrum of solar radiation ([SW] 0.3 - 5.0 µm).226

227

Fig. 1 illustrates several 2 km x 2 km subsets based on CAR, MODIS, and Landsat retrievals228

of SW white-sky albedo (WSA) (Fig.1a –d), broadband NDVI (Fig.1e –h), as well as a true-color229

IKONOS scene retrieved on 1 July 2007 (Fig.1i). The red circle over the IKONOS scene denotes230

the ~960 m ground diameter footprint as seen by the downward-facing pyranometer atop the231

CART site’s 60 m radiation tower. Throughout the analysis stage in Section 4, a Gaussian filter232

was applied to the CAR, MODIS, and Landsat data to compute spatially-integrated albedos that233

represented the tower’s ground-projected instantaneous field of view (GIFOV) (Fig. 1j).234



In order to quantify the temporal consistency of albedo retrievals during the period of235

CLASIC’07, estimates of broadband NDVI were generated for each sensor (e.g. Fig. 1e – h).236

NDVI estimates based on broadband white-sky albedos were used to minimize the influence of237

variable sun-target-sensor configurations when estimating measurement differences and changes238

in vegetation conditions (Huete et al. 2002). Results in Fig. 1 show how areas north of the CART239

site and the winter wheat fields just east and west of the site, appear to be more vegetated during240

the Landsat overpass period (DOY 154). However, the overall change in NDVI was relatively241

small throughout the CLASIC’07 period (DOY 153-190) (i.e., ~5.7% for the entire study area242

and ~8.0% for the area within the CART tower footprint).243

The WSA results in Fig. 1a – 1d show some similarities between the CAR-CRM and MOD-244

IS WSA data, as well as some differences between the finer resolution Landsat and CAR-MRM245

albedos. In particular, the Landsat albedos (Fig. 1a) could resolve fine-scale spatial features246

across the CART site (e.g., small buildings and dirt roads); but were also characterized by higher247

‘within-biome’ variability. This is demonstrated in Fig. 2, which illustrates the overall mean and248

standard deviations in white-sky albedo based on individual estimates obtained for each repre-249

sentative land cover class identified across the CART site. The ancillary land cover data is based250

on field surveys, vegetation measurements, and surface characterizations performed during251

CLASIC’07 (Román et al. 2011a). Unlike the MODIS and CAR intrinsic albedos, which are dri-252

ven by the anisotropy of each pixel, the Landsat retrieval scheme is based on per-class MODIS253

BRDF shapes based on uniform land cover characteristics. This resulted in WSA retrievals of254

varying magnitudes, particularly across mixed cover types (e.g., bare soil mixed with short255



grass). This is in contrast to the relatively lower within-biome variability seen in the CAR and256

MODIS white-sky albedos across all land cover classes and broadband channels.257

Additional quality assurance (QA) checks were performed to assess the consistency of each258

retrieval scheme. For this study, both the Landsat and MODIS intrinsic albedos were based on259

gap-free, quality-enhanced BRDF retrievals that rely on spatial and temporal fitting techniques to260

compensate for missing data and provide an estimate of the surface reflectance anisotropy for 261

situations under cloud-contaminated conditions (Zhang 2008). For the period surrounding the262

Landsat date of acquisition, the MODIS retrievals were all based on high-quality “majority” full263

inversion values. Conversely, the data acquisition period surrounding the CAR measurements264

(DOY 175) was impacted by changing weather conditions (e.g., clouds and rainfall events).265

These weather conditions resulted in the majority of MODIS retrievals to be based on lower-266

quality temporally-fitted pixels; particularly, throughout DOY 161-190. Consequently, MODIS267

retrievals provided a close, but not exact, representation of the surface conditions surrounding268

the CAR measurements during the CLASIC’07 experiment. For an in-depth look at the MODIS269

and CAR quality assurance assessment, readers are referred to Section 3 in Román et al.,270

(2011a), where QA summaries based on data from CLASIC Flight #1928 are available.271

Understanding the above mentioned differences in BRDF/albedo retrieval strategies and data272

acquisition periods, it is important to note that the ground-based observations obtained at the273

CART site provide a consistent reference source for all albedo reconstructions (albeit for a small274

area the size of a few MODIS pixels) (cf., Section 4). Furthermore, as we will demonstrate in275



Section 5, the CAR data can help reduce the propagation of measurement uncertainty and error276

when evaluating the satellite-based retrieval schemes at the individual pixel level.277

4. Comparisons to tower-based measurements278

We now examine the diurnal performance of instantaneous albedos derived from CAR,279

MODIS, and Landsat, based on comparisons against available in situ observations acquired dur-280

ing CLASIC’07. Measurements from a downward-facing pyranometer installed on a 60 m radia-281

tion tower at the CART site collected albedo and radiation fluxes in the shortwave (SW) (0.3- 2.8282

μm) waveband (Fig.1i). Two additional instruments, a normal incidence pyrheliometer mounted283

on an automatic sun tracker and a shaded pyranometer riding on top of the sun tracker, measured284

direct and diffuse solar radiation incident upon the field station (cf., Fig. 3 in Román et al.,285

2011a). Estimates of cloud fraction and aerosol optical depth, as viewed from a skyward-looking286

pyranometer and an AERONET sunphotometer (Holben et al. 2001), were also collected. This287

measurement scheme follows a strict set of guidelines as established by the International Base-288

line Surface Radiation Network (BSRN) (McArthur 2005; WMO 2006). BSRN measurement289

protocols are recognized as the international standard for in situ albedo data, with a review290

process that includes additional quality assurance (QA) checks (e.g. standard units, naming con-291

ventions, and reporting intervals) to maintain consistency within the larger network-wide BSRN292

database (Schaaf et al. 2009).293

Following the albedo reconstruction periods described in Table 1, results in Figs. 3 and 4294

show comparisons between the tower-based albedos and instantaneous albedos derived from295

CAR, MODIS, and Landsat data. Measurements of aerosol optical depth (AOD) at 550 nm are296



also plotted in Fig. 4 (right-axis); while AOD measurements recorded during DOY 153-155 (Fig.297

3) remained low and constant throughout this period (i.e., AOD = 0.1676 ± 0.0590). Results298

show the usual “U-shaped” diurnal trend in instantaneous albedo that reaches a minimum value299

around local solar noon time. In general, the CAR and MODIS albedos met the absolute accura-300

cy requirement of 0.02 units (i.e., within 10% of surface measured values) for instantaneous SW301

albedos at SZA < 45˚ (i.e., between 10.00 and 16.00 local time); with the CAR-CRM albedo data302

also performing well at SZA > 45˚ (i.e., before 10.00 and after 16.00 local time). Conversely,303

both MODIS and Landsat consistently underestimated the tower albedos at SZA > 45˚. The sta-304

tistical results in Tables 2 and 3 show similar negative trends in the biases derived from MODIS305

and Landsat albedos. Finally, CAR and MODIS retrievals based on the full expression of instan-306

taneous albedo (Eq. 6) showed slight improvements by ~0.0065 absolute units over the isotropic307

albedo formulation (Eq. 5). As seen for several dates in Fig. 4, the full expression results for308

MODIS and CAR are much closer to the daily albedo maxima at SZA = 75˚.309



310
Fig. 3. Comparisons between instantaneous retrievals of surface albedo (15-min intervals) derived311
from CAR-MRM (red squares), MODIS (green triangles), Landsat (‘X’ marks), and tower-based312
measurements (blue diamonds) acquired at the CART site throughout a 3-day period surrounding313
the Landsat overpass date (DOY 154, 2007).314

Table 2. Accuracya, (absolute bias) and uncertaintyb (RMS of absolute error or RMSE) values re-315
sulting from comparisons between between ground-based (CART), airborne (CAR-MRM), and sa-316
tellite-derived (MODIS and Landsat) albedos as illustrated in Fig. 3. The total sample size (n) for317
two solar zenith angle (SZA) ranges is shown.318319

10˚ ≤ SZA ≤ 45˚ (n = 69) 45˚ ≤ SZA ≤ 75˚ (n = 34)

DOY 153-155,2007 CAR-MRM MODIS Landsat CAR-CRM MODIS Landsat

Accuracy (Bias) 0.0044 -0.0136 -0.0324 -0.0266 -0.0433 -0.0401

Uncertainty (RMSE) 0.0090 0.0157 0.0327 0.0287 0.0447 0.0407320
aAccuracy =arithmetic mean (Sensor – Tower)321
bUncertainty: RMS of absolute error =

2Tower)-(Sensormeanarithmetic322

323



324
Fig. 4. Comparisons between instantaneous albedos (30-min intervals) derived from CAR-CRM325
and MODIS (using both isotropic and full expressions), and tower-based measurements acquired at326
the CART site throughout a 32-day period surrounding CLASIC Flight #1928 (DOY 175, 2007).327

328
329

Table 3. Accuracy and uncertainty values resulting from a 32-day comparison between ground-330
based (CART), airborne (CAR-CRM), and satellite-derived (MODIS) albedos as illustrated in Fig.331
4. Setup is the same as Table 2.332

10˚ ≤ SZA ≤ 45˚ (n = 289) 45˚ ≤ SZA ≤ 75˚ (n = 193)

DOY 159-190,2007 CAR-CRM MODIS CAR-CRM MODIS

Accuracy (Bias) 0.0042 -0.0286 -0.0096 -0.0495

Uncertainty (RMSE) 0.0082 0.0296 0.0184 0.0526

333

5. Regional assessment of MODIS and Landsat albedos334

In the previous section, CAR retrievals were shown to be of sufficient accuracy and consis-335

tency to reproduce the diurnal variations in albedo across the CART site throughout the entire336

period of CLASIC’07. Using the CAR-MRM and CAR-CRM instantaneous albedos as “ground-337

truth”, we now employ standard error propagation techniques (Heuvelink 1998) to quantify the338

uncertainties associated with MODIS and Landsat instantaneous albedos over a mixture of land-339

scapes extending beyond the tower observation footprint at the CART site.340



Assuming that the error propagation terms in Eqs. (14 -15) are uncorrelated, the Root-Sum-341

of-Squares Error (RSSE) can be used to provide estimates of retrieval uncertainty (absolute342

RMSE) and bias, both in an absolute and temporal sense:343

   22 ˆˆ
MODISCRMCARCRMCARtowerMODIS ErrErrRSSE    (14)344

   22 ˆˆ
LandsatMRMCARMRMCARtowerLandsat ErrErrRSSE    (15)345

where  xErr ̂ denotes the “in-situ to satellite” error propagation chain based on two component346

factors. CAR BRDF/albedo retrievals were then matched to the resolution of MODIS and Land-347

sat to minimize errors due to sub-grid scale mismatch and the effects of land surface heterogenei-348

ty. Additional checks were also performed to limit the sampling of CAR pixels to the highest349

quality “majority” full BRDF inversion values. For CLASIC’07, this resulted in 789 individual350

samples, each of which was tested following the same albedo reconstruction periods presented in351

Section 3.352



353
Fig. 5. Distribution of absolute bias (accuracy) and RMSE (uncertainty) for MODIS and Landsat354
instantaneous albedos at UV-Visible, NIR, and SW broadband channels for the CLASIC’07 period355
over the CART site.356

Results were examined by comparing the distribution of biases and RMSEs resulting from357

MODIS and Landsat instantaneous albedos at LSN ≤ SZA ≤ 75˚. The histogram plots in Fig. 5358

show a persistent negative bias (-0.03) in SW instantaneous albedos, corresponding to the biases359

recorded for MODIS and Landsat in earlier assessments (cf., results in Tables 2 and 3). Likewise,360

for the NIR broadband, roughly 19% of Landsat retrievals showed positive biases above the361

standard accuracy limit of ±0.072 units. In the VIS broadband, a small fraction of MODIS (23%)362



and a large fraction of Landsat retrievals (57%) were also above the standard accuracy limit of363

±0.018 units. To understand the causes of such differences, a collection of ternary diagrams were364

created to determine how each sensor performed at the individual pixel level. The diagrams in365

Fig. 6 have been arranged such that retrievals located near the top originate from landscapes366

dominated by non-photosynthetic (or 'brown') vegetation (i.e., combined land cover (LC) classes367

1, 4, and 5 in Fig. 2). Conversely, retrievals located near the bottom-left correspond to areas368

dominated by bare soils (i.e., combined LC classes 6, 7, and 8 in Fig. 2), and retrievals located369

near the bottom-right correspond to areas dominated by green vegetation (i.e., combined LC370

classes 2, and 3 in Fig. 2). Thus, the closer the satellite retrievals are to the center portions of the371

ternary diagrams, the more mixed is the landscape.372

Results reveal a large degree of variability in the RMSE and bias estimates of MODIS and373

Landsat albedos, both between fractional cover types and across broadband channels. In particu-374

lar, the MODIS NIR values remained stable across most landscape regimes, with only a few375

samples identified above the 20% margin of error for snow-free conditions (Fig. 6e). A synoptic376

analysis of the ternary diagrams also suggests that the uncertainties in the NIR broadband are377

more likely to propagate into the SW domain (Figs. 6i –6l). The MODIS VIS broadband also ap-378

peared to capture bare-soil albedo variability (i.e., wet vs. dry areas) with high accuracy (-0.008);379

but the biases where moderately larger over mixed landscapes (+0.012) and regions dominated380

by non-photosynthetic vegetation (+0.019) (Fig. 6a). Conversely, the Landsat albedos were less381

stable in the NIR, with positive biases (+0.05) dominating over mixed landscapes (Fig. 6f). The382

same error patterns where seen in the VIS broadband, where more than half of Landsat retrievals383



were above the 20% margin of error (Fig. 6d). The latter resulted from varying magnitudes384

across mixed cover types and regions dominated by bare soils (Fig. 6b).385

a. b. c. d.

e. f. g. h.

i. j. k. l.

386
Fig. 6. Ternary diagrams illustrating the pixel-specific accuracy (absolute bias) and uncertainty387
(absolute RMSE) of MODIS and Landsat instantaneous albedos (LSN ≤ SZA ≤ 75) at UV-Visible (a.388
– d.), NIR (e. – d.), and SW (i. – l.) broadband channels for the CLASIC’07 period over the CART389
site. For each color scale, green denotes values where the bias or RMSE = 0. For the accuracy dia-390
grams, the lower (blue) and upper (red) limits correspond to retrievals that are at or above a 20%391
margin of error (i.e., relative to in-situ measurements obtained under snow-free conditions). For the392
uncertainty diagrams, the upper (red) limit denotes the same (20%) margin of error.393

394

For the period of CLASIC’07, there were two major factors that contributed to the uncer-395

tainties in the satellite-derived albedo values. First, it is unlikely that the assumption of temporal396



stability in the retrieval of 500 m MODIS BRDFs could hold together throughout the extended397

periods of cloud-contaminated observations experienced during CLASIC’07. Daily records from398

land cover surveys performed on DOY 166-173 over landscapes surrounding the CART site con-399

firm that several parcels of corn, milo, and winter-wheat were being harvested before full maturi-400

ty due to floods experienced along the Salt Fork Arkansas River (located 5 km north of the401

CART site). A visual inspection of the 2.4 m IKONOS scene acquired on 1 July (Fig. 1i) also402

confirms these events. Thus, it is likely that the negative (-0.03) biases in MODIS SW albedos403

are caused by the use of temporally-fitted BRDF shapes that are driven by “majority” full inver-404

sion values obtained prior to the early harvesting period (i.e., DOY 145-153, 2007). This may405

explain why the uncertainties of MODIS VIS albedos where predominantly above the 20% mar-406

gin of error over areas dominated by senescent winter-wheat fields; but remained well under the407

10% margin of error over areas dominated by bare soils.408

For the Landsat albedos, another major source of uncertainty is the assumption of spatial and409

structural uniformity at the Landsat (30 m) pixel scale. In the Landsat albedo retrieval algorithm,410

“pure” land cover clusters are identified on a regional basis and then associated with MODIS411

anisotropy information through scaling of 500 m BRDF retrievals to 30 m resolution. However,412

recent assessments of the CLASIC Flight #1928 dataset have indicated that the use of dominant413

archetypal BRDF shapes to describe the anisotropy of heterogeneous pixels may lead to errors on414

the order of 0.5% – 6.5% in the retrieved directional reflectance values (cf., Fig.10 in Román et415

al., 2011a). This will particularly affect retrievals where heterogeneous conditions are being416

lumped into a single land cover class (e.g., bare soil areas not being properly partitioned into dry,417

wet, and damp conditions.) As discussed in Shuai et al., (2011) these situations can be addressed418



by breaking “pure” land cover clusters into multiple sub-clusters representing different surface419

conditions.420

6. Conclusions and future recommendations421

The diurnal performance of the MODIS and Landsat albedo algorithms (Schaaf et al. 2002;422

Shuai et al. 2011) is evaluated using field and airborne measurements coincident with Landsat423

TM and multi-date MODIS Terra/Aqua overpasses. For the broad range of mixed vegetation and424

structural types examined during the period of CLASIC’07, the overall accuracy of MODIS and425

Landsat SW (0.3 -5.0 µm) albedos is within a 10% margin of error and shows an increasing neg-426

ative bias (-0.03) and increased RMSE (0.05) as zenith angle increases compared with the in-situ427

measurements. Results also reveal a high degree of variability in the RMSE and bias of MODIS428

and Landsat albedos in both the visible (0.3 - 0.7 µm) and near-infrared (0.7 - 5.0 µm) broadband429

channels. However, we note that the lack of high-quality “majority” 500m MODIS BRDF pixels430

through the experiment hindered the band-dependent quality controls, as outliers were more dif-431

ficult to identify. This was particularly the case in the VIS broadband, where cloud contamination432

and mixed-pixel contamination are highly likely. Despite such limitations, results obtained indi-433

cate that MODIS VIS/NIR albedos are able to capture bare-soil albedo variability (i.e., wet vs.434

dry areas) with high accuracy (-0.008).435

While recent product development, intercomparison, and validation efforts have focused al-436

most entirely on the retrieval of surface albedos for a single SW broadband value, it is important437

to note that most numerical prediction models (and global climate and biogeochemical models)438

currently in use call for surface energy fluxes and some biophysical variables to be calculated439



separately by disentangling broadband albedos into fractional areas of bare soil and vegetation440

(Noilhan and Mahfouf 1996; Koster et al. 2000; Ek et al. 2003; Kaptué et al. 2010). It is there-441

fore important to continue examining how the accuracies of global albedo products are holding442

up in these spectral regimes. Likewise, the uncertainties that may impact satellite-inferred albedo443

trends must be assessed and expressed in terms of a reference sensor that can overcome the fore-444

told errors due to sub-grid scale mismatch and the effects of land surface heterogeneity. It is thus445

critical that continuous, long-term tower measurements of surface albedo and radiation fluxes be446

done in concert with intensive airborne measurement campaigns that can focus on addressing447

sources of uncertainties at both plot-level (< 90 m) to landscape-level (> 90 m) scales.448

It is clear that spatial scale of signal aggregation is very important in the retrieval of mea-449

ningful surface radiation properties of vegetated surfaces from multiangle and pseudo-multi-450

angular remote sensing data. This is forcing experimenters to develop new measurement and va-451

lidation protocols for surface BRDF and albedo estimation (Walthall et al. 2000; Schaaf et al.452

2009). Ongoing studies combining airborne multiangular measurements from CAR with mea-453

surements of terrestrial biomass and ecosystem structure, e.g., NASA’s L-band Digital Beam-454

forming Synthetic Aperture Radar (DBSAR) (Rincon et al. 2011) and the Slope Imaging Multi-455

polarization Photon-counting Lidar (SIMPL) (Dabney et al. 2010), will provide us with new in-456

sights to issues of landscape-level variability and the opportunity to continue examining mixed457

pixels from both medium and coarse scale resolution systems.458



Bibliography459

Augustine, J.A., Hodges, G.B., Cornwall, C.R., Michalsky, J.J., & Medina, C.I. (2005). An up-460
date on SURFRAD - The GCOS surface radiation budget network for the continental United461
States. Journal of Atmospheric and Oceanic Technology, 22, 1460-1472.462

Barnes, C.A., & Roy, D.P. (2008). Radiative forcing over the conterminous United States due to463
contemporary land cover land use albedo change. Geophysical Research Letters, 35, L09706.464
doi:10.1029/2008GL033567.465

Berk, A., Cooley, T.W., Anderson, G.P., Acharya, P.K., Bernstein, L.S., Muratov, L., Lee, J.,466
Fox, M.J., Adler-Golden, S.M., Chetwynd, J.H., Hoke, M.L., Lockwood, R.B., Gardner, J.A., &467
Lewis, P.E. (2004). MODTRAN5: A Reformulated Atmospheric Band Model with Auxiliary468
Species and Practical Multiple Scattering Options, Sensors, Systems, and Next-Generation Satel-469
lites. VIII. Proceedings of the Society of Photographic Instrumentation Engineers (SPIE), 5571,470
78-85471

Bindlish, R., Jackson, T., Sun, R., Cosh, M., Yueh, S., & Dinardo, S. (2009). Combined passive472
and active microwave observations of soil moisture during CLASIC. IEEE Geoscience and Re-473
mote Sensing Letters, 6, 644-648. doi:10.1109/LGRS.2009.2028441.474

Butler, J.J., & Barnes, C.A. (2003). The use of transfer radiometers in validating the visible to475
shortwave infrared calibrations of radiance sources used by instruments in NASA's Earth Ob-476
serving System. Metrologia, 40, S70-S77. doi:10.1088/0026-1394/40/1/316.477

Dabney, P., Harding, D., Abshire, J., Huss, T., Jodor, G., Machan, R., Marzouk, J., Rush, K.,478
Seas, A., Shuman, C., Sun, X., Valett, S., Vasilyev, A., Yu, A., & Zheng, Y. (2010). The Slope479
Imaging Multi-polarization Photon-counting Lidar: Development and performance results Pro-480
ceedings of the Geoscience and Remote Sensing Symposium (IGARSS'10), Honolulu, HI, 653 -481
656. doi:10.1109/IGARSS.2010.5650862482

Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., & Tarpley,483
J.D. (2003). Implementation of the upgraded Noah land surface model in the National Centers484
for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Re-485
search, 108 (D22), 8851. doi:10.1029/2002JD003296.486

Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS487
surface feflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geos-488
cience and Remote Sensing, 44, 2207-2218. doi:10.1109/TGRS.2006.872081.489

Gatebe, C.K., Butler, J.J., Cooper, J.W., Kowalewski, M., & King, M.D. (2007). Characteriza-490
tion of errors in the use of integrating-sphere systems in the calibration of scanning radiometers.491
Applied Optics, 46, 7640-7651.492

Gatebe, C.K., King, M.D., Platnick, S., Arnold, G.T., Vermote, E.F., & Schmid, B. (2003). Air-493
borne spectral measurements of surface-atmosphere anisotropy for several surfaces and ecosys-494
tems over southern Africa. Journal of Geophysical Research, 108(D13).495
doi:10.1029/2002JD002397.496



Heathman, G.C., Larose, M., Cosh, M.H., & Bindlish, R. (2009). Surface and profile soil mois-497
ture spatio-temporal analysis during an excessive rainfall period in the Southern Great Plains,498
USA. CATENA, 78, 159-169. doi:10.1016/j.catena.2009.04.002.499

Heuvelink, G.B.M. (1998). Error propagation in environmental modeling with GIS.500

Holben, B.N., Tanre, D., Smirnov, A., Eck, T.F., Slutsker, I., N., A., Newcomb, W.W., Schafer,501
J., Chatenet, B., Lavenue, F., Kaufman, Y.J., J., V.-C., Setzer, A., Markham, B., Clark, D.,502
Frouin, R., Halthore, R., Karnieli, A., O'Neill, N.T., Pietras, C., Pinker, R.T., Voss, K., & Zibor-503
di, G. (2001). An emerging ground-based aerosol climatology: Aerosol Optical Depth from504
AERONET. Journal of Geophysical Research, 106, 12067-12097.505

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002). Overview of506
the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing507
of Environment, 83, 195-213. doi:10.1016/S0034-4257(02)00096-2.508

Jin, Y.F., Schaaf, C.B., Gao, F., Li, X.W., Strahler, A.H., Lucht, W., & Liang, S.L. (2003a).509
Consistency of MODIS surface bidirectional reflectance distribution function and albedo retriev-510
als: 1. Algorithm performance. Journal of Geophysical Research, 108, D5.511
doi:10.1029/2002JD002803.512

Jin, Y.F., Schaaf, C.B., Woodcock, C.E., Gao, F., Li, X.W., Strahler, A.H., Lucht, W., & Liang,513
S.L. (2003b). Consistency of MODIS surface bidirectional reflectance distribution function and514
albedo retrievals: 2. Validation. Journal of Geophysical Research, 108, D5.515
doi:10.1029/2002JD002804.516

Kaptué, T.A.T., Roujean, J.-L., & Faroux, S. (2010). ECOCLIMAP-II: An ecosystem classifica-517
tion and land surface parameter database of western Africa at 1 km resolution for the Africa518
Monsoon Multidisciplinary Analysis (AMMA) project. Remote Sensing of Environment, 114,519
961-976. doi:10.1016/j.rse.2009.12.008.520

King, M.D., Strange, M.G., Leone, P., & Blaine, L.R. (1986). Multiwavelength scanning radi-521
ometer for airborne measurements of scattered radiation within clouds. Journal of Atmospheric522
and Oceanic Technology, 3, 513-522.523

Koster, R.D., Suarez, M.J., Ducharne, A., Stieglitz, M., & Kumar, P. (2000). A catchment-based524
approach to modeling land surface processes in a general circulation model 1. Model structure.525
Journal of Geophysical Research, 105, 24809-24822. doi:10.1029/2000JD900327.526

Lee, T.F., Nelson, C.S., Dills, P., Riishojgaard, L.P., Jones A, Li L., Miller, S., Flynn, L.E., Jed-527
lovec, G., McCarty, W., Hoffman, C., & McWilliams, G. (2010). NPOESS: Next-Generation528
Operational Global Earth Observations. Bull. Am. Met. Soc., 91, 727-740.529
doi:10.1175/2009BAMS2953.1.530

Lewis, P., & Barnsley, M. (1994). Influence of the Sky Radiance Distribution on Various Formu-531
lations of the Earth Surface Albedo. Proceedings of the Colloque International Mesures Physi-532
ques et Signatures en Teledetection, 707-716533

Li, X.W., & Strahler, A.H. (1992). Geometric-optical bidirectional reflectance modeling of the534
discrete crown vegetation canopy - Effect of crown shape and mutual shadowing. IEEE Transac-535
tions on Geoscience and Remote Sensing, 30, 276-292. doi:10.1109/36.134078.536



Liang, S. (2001). Narrowband to Broadband Conversion of Land Surface Albedo. I. Algorithms.537
Remote Sensing of Environment, 76, 213-238.538

Liang, S., Shuey, C., Russ, A., Fang, H., Chen, M., Walthall, C., Daughtry, C., & Jr., R.H.539
(2003). Narrowband to broadband conversions of land surface albedo. II: Validation. Remote540
Sensing of Environment, 84, 25-41.541

Liu, J., Schaaf, C.B., Strahler, A.H., Jiao, Z., Shuai, Y., Zhang, Q., Román, M., Augustine, J.A.,542
& Dutton, E.G. (2009). Validation of Moderate Resolution Imaging Spectroradiometer (MODIS)543
albedo retrieval algorithm: Dependence of albedo on solar zenith angle. Journal of Geophysical544
Research-Atmospheres, 114, D01106. doi:10.1029/2008JD009969.545

Lucht, W., Schaaf, C.B., & Strahler, A.H. (2000). An algorithm for the retrieval of albedo from546
space using semi-empirical BRDF models. IEEE Transactions on Geoscience and Remote Sens-547
ing, 38, 977-998. doi:10.1109/36.841980.548

Lyapustin, A.I., & Privette, J.L. (1999). A new method of retrieving surface bidirectional reflec-549
tance from ground measurements: Atmospheric sensitivity study. Journal of Geophysical Re-550
search, 104, 6257-6268.551

Martonchik, J., Bruegge, C., & Strahler, A.H. (2000). A Review of Reflectance Nomenclature552
Used in Remote Sensing. Remote Sensing Reviews, 19, 9-20. doi:10.1080/02757250009532407.553

Masek, J., Huang, H., Wolfe, R.E., Cohen, W.B., Hall, F., Kutler, J., & Nelson, P. (2008). North554
American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Envi-555
ronment, 112, 2914-2926. doi:10.1016/j.rse.2008.02.010.556

Masek, J.G., Vermote, E.F., Saleous, N., Wolfe, R.E., Hall, F.G., Huemmrich, F.K., Gao, F.,557
Kutler, J., & Lim, T.k. (2006). A Landsat surface reflectance data set for North America, 1990-558
2000. Geosciences and Remote Sensing Letters, 3, 68-72.559

McArthur, L.B.J. (2005). Baseline Surface Radiation Network (BSRN) Operations Manual V2.1,560
WCRP 121, WMO/TD-No. 1274, April 2005,561
http://www.wmo.ch/pages/prog/wcrp/PG_Reports_WCRPSeries.html. In: World Climate Re-562
search Program.563

Morisette, J.T., Privette, J.L., & Justice, C.O. (2002). A framework for the validation of MODIS564
land products. Remote Sensing of Environment, 83, 77-96. doi:10.1016/S0034-4257(02)00088-3.565

Noilhan, J., & Mahfouf, J.-F. (1996). The ISBA land surface parametrisation scheme. Global566
and Planetary Change, 13, 145-159. doi:10.1016/0921-8181(95)00043-7.567

Rincon, R.F., Vega, M.A., Buenfil, M., Geist, A., Hilliard, L., & Racette, P. (2011). NASA's L-568
Band Digital Beamforming Synthetic Aperture Radar IEEE Transactions on Geoscience and569
Remote Sensing, 49, 3622-3628. doi:10.1109/TGRS.2011.2157971.570

Román, M.O., Gatebe, C.K., Poudyal, R., Schaaf, C.B., Wang, Z., & King, M.D. (2011a). Varia-571
bility in surface BRDF at different spatial scales (30 m-500 m) over a mixed agricultural land-572
scape as retrieved from airborne and satellite spectral measurements. Remote Sensing of Envi-573
ronment, 115, 2184-2203. doi:10.1016/j.rse.2011.04.012574



Román, M.O., Justice, C., Csiszar, I., Key, J.R., Devadiga, S., Davidson, C., Wolfe, R., & Pri-575
vette, J. (2011b). Pre-launch evaluation of the NPP VIIRS Land and Cryosphere EDRs to meet576
NASA's science requirements. Proceedings of the Geoscience and Remote Sensing Symposium577
(IGARSS'11), Vancouver, BC, 154-157. doi:10.1109/IGARSS.2011.6048921.578

Román, M.O., Schaaf, C.B., Lewis, P., Gao, F., Anderson, G.P., Privette, J.L., Strahler, A.H.,579
Woodcock, C.E., & Barnsley, M. (2010). Assessing the coupling between surface albedo derived580
from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote581
Sensing of Environment, 114, 738-760. doi:10.1016/j.rse.2009.11.014.582

Román, M.O., Schaaf, C.B., Yang, X., Woodcock, C.E., Strahler, A.H., Braswell, R.H., Curtis,583
P.S., Davis, K.J., D., D., Gu, L., Goulden, M.L., Hollinger, D.Y., Kolb, T.E., Meyers, T.P.,584
Munger, J.W., Privette, J.L., Richardson, A.D., Wilson, T.B., & Wofsy, S.C. (2009). The MOD-585
IS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over fo-586
rested landscapes. Remote Sensing of Environment, 113, 2476-2498.587
doi:10.1016/j.rse.2009.07.009.588

Ross, J. (1981). The Radiation Regime and Architecture of Plant Stands. Norwell, Mass.: The589
Hague: Dr. W. Junk Publishers. ISBN 906193-607-1.590

Roy, D.P., Ju, J., Lewis, P., Schaaf, C.B., Gao, F., Hansen, M., & Lindquist, E. (2008). Multi-591
temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and592
prediction of Landsat data. Remote Sensing of Environment, 112, 3112-3130.593
doi:10.1016/j.rse.2008.03.009.594

Salomon, J.G., Schaaf, C.B., Strahler, A.H., Gao, F., & Jin, Y.F. (2006). Validation of the MOD-595
IS bidirectional reflectance distribution function and albedo retrievals using combined observa-596
tions from the Aqua and Terra platforms. IEEE Transactions on Geoscience and Remote Sens-597
ing, 44, 1555-1565. doi:10.1109/TGRS.2006.871564.598

Schaaf, C.B., Cihlar, J., Belward, A., Dutton, E., & Verstraete, M. (2009). Albedo and Reflec-599
tance Anisotropy, ECV-T8: Assessment of the status of the development of standards for the Ter-600
restrial Essential Climate Variables. Rome: FAO.601

Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., Strugnell, N.C., Zhang, X.,602
Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale,603
M., Doll, C., d'Entremont, R., Hu, B., Liang, S., Privette, J.L., & Roy, D.P. (2002). First opera-604
tional BRDF, albedo and nadir reflectance products from MODIS. Remote Sensing of Environ-605
ment, 83, 135-148. doi:10.1016/S0034-4257(02)00091-3.606

Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S., & Martonchik, J.V. (2006).607
Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sensing of608
Environment, 103, 27-42. doi:10.1016/j.rse.2006.03.002.609

Shuai, Y., Masek, J., Gao, F., & C.B., S. (2011). An Algorithm for the Retrieval of 30m snow-610
free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sensing of Environ-611
ment, submitted, 115, 2204-2216. doi:10.1016/j.rse.2011.04.019.612



Susaki, J., Yasuoka, Y., Kajiwara, K., Honda, Y., & Hara, K. (2007). Validation of MODIS al-613
bedo products of paddy fields in Japan. IEEE Transactions on Geoscience and Remote Sensing,614
45, 206-217. doi:10.1109/TGRS.2006.882266.615

Trishenko, A., Luo, Y., Cribb, M., & Hamm, K. (2003). Surface Spectral Albedo Intensive Op-616
erational Period at the ARM SGP Site in August 2002: Results, Analysis, and Future Plans. In:617
[http://iop.archive.arm.gov/arm-iop/2002/sgp/sfcalb/] ARM Intensive Operational Period (IOP)618
Data Browser.619

Walthall, C., Roujean, J.-L., & Morisette, J. (2000). Field and landscape BRDF optical wave-620
length measurements: Experience, techniques and the future. Remote Sensing Reviews, 18, 503-621
531. doi:10.1080/02757250009532399.622

Wang, Z., Schaaf, C.B., Strahler, A.H., Wang, J., Woodcock, C.E., Chopping, M.J., Román,623
M.O., Rocha, A.V., & Shuai, Y. (2011). Evaluation of Moderate-resolution Imaging Spectrora-624
diometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sensing of Environ-625
ment. doi:10.1016/j.rse.2011.10.002.626

Wanner, W., Li, X., & Strahler, A.H. (1995). On the Derivation of Kernels for Kernel-Driven627
Models of Bidirectional Reflectance. Journal of Geophysical Research, 100, 21077-21089.628
doi:10.1029/95JD02371.629

Wanner, W., Strahler, A.H., Hu, B., Lewis, P., Muller, J., Li, X., Schaaf, C.B., & Barnsley, M.630
(1997). Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and631
MISR data: Theory and algorithm. Journal of Geophysical Research, 102, 17143-17161.632
doi:10.1029/96JD03295.633

WMO (2006). World Meteorological Organization Commission for Instruments and Methods of634
Observation (WMO/CIMO) Guide to Meteorological Instruments and Methods of Observation.635
Preliminary seventh edition. Report WMO-No. 8, Geneva, Switzerland.636
http://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/Draft-7-edition.html;637
http://www.wmo.ch/pages/prog/www/IMOP/publications/WMO-8-Guide-contents.html.638

Zhang, Q. (2008). A Global Spatially and Temporarily Complete Reflectance Anisotropy Data-639
base to Improve Surface Characterization for Albedo Modeling. In, PhD Thesis, Department of640
Geography and Environment (p. 155). Boston, MA: Boston University.641

642

643


