5,623 research outputs found
Fire Retardancy in 2001
Fire is a world-wide problem which claims lives and causes significant loss of property. Some of the problems are discussed and the solution delineated. This peer-reviewed volume is designed to be as the state-of-the-art. This chapter provides a perspective for current work
First-Principles Structural, Mechanical, and Thermodynamic Calculations of the Negative Thermal Expansion Compound Zr2(WO4)(PO4)2
The negative thermal expansion (NTE) material Zr2(WO4)(PO4)2 has been investigated for the first time within the framework of the density functional perturbation theory (DFPT). The structural, mechanical, and thermodynamic properties of this material have been predicted using the Perdew, Burke and Ernzerhof for solid (PBEsol) exchange–correlation functional, which showed superior accuracy over standard functionals in previous computational studies of the NTE material α-ZrW2O8. The bulk modulus calculated for Zr2(WO4)(PO4)2 using the Vinet equation of state at room temperature is K0 = 63.6 GPa, which is in close agreement with the experimental estimate of 61.3(8) at T = 296 K. The computed mean linear coefficient of thermal expansion is −3.1 × 10–6 K−1 in the temperature range ∼0–70 K, in line with the X-ray diffraction measurements. The mean Grüneisen parameter controlling the thermal expansion of Zr2(WO4)(PO4)2 is negative below 205 K, with a minimum of −2.1 at 10 K. The calculated standard molar heat capacity and entropy are CP0 = 287.6 and S0 = 321.9 J·mol–1·K–1, respectively. The results reported in this study demonstrate the accuracy of DFPT/PBEsol for assessing or predicting the relationship between structural and thermomechanical properties of NTE materials
The Origins of Captive Pricing: Electric Lamp Renewal Systems
Purpose – The purpose of this paper is to describe the development of electric lamp renewal systems, an early, successful program to encourage the adoption of new technology, electric lighting. Design/methodology/approach – Much material for the research comes from a variety of archival sources and publications of the early part of the twentieth century. Findings – The free lamp renewal system was brilliant and effective: its high level of customer service and human contact dispelled fear raised by the new energy source, increasing the acceptance and use of electric lighting and thereby electricity. Lighting, in the absence of electrical appliances, was one of the few users of electricity. Thus, the electric companies created a marketing strategy that encouraged adoption of the new technology. Research limitations/implications – We examined the electric lighting industry at the turn of the twentieth century. Other examples of technology adoption could generalize our findings. Practical implications – Our research suggests that supportive programs, which are high in customer contact and customized service, can aid in the adoption of new technology and unfamiliar products. By encouraging the use of such free or cheap products, customers are induced to higher usage of related products that increase the revenue stream to the provider. Originality/value – The lamp renewal system is forgotten today, yet was a crucial factor in winning consumer acceptance of electric lighting and an early example of how companies can encourage adoption of new technology. Although the concept of uniformed men in trucks coming to customer homes once a month to clean and replace light bulbs is quaint – it worked
Size, Surface Structure, and Doping Effects on Ferromagnetism in SnO\u3csub\u3e2\u3c/sub\u3e
The effects of crystallite size, surface structure, and dopants on the magnetic properties of semiconducting oxides are highly controversial. In this work, Fe:SnO2 nanoparticles were prepared by four wet-chemical methods, with Fe concentration varying from 0% to 20%. Analysis confirmed pure single-phase cassiterite with a crystallite size of 2.6 ± 0.1 nm that decreased with increasing. Fe% doped substitutionally as Fe3+. Pure SnO2 showed highly reproducible weak magnetization that varied significantly with synthesis method. Interestingly, doping SnO2 with Fe \u3c 2.5% produced enhanced magnetic moments in all syntheses; the maximum of 1.6 × 10−4 µB/Fe ion at 0.1% Fe doping was much larger than the 2.6 × 10−6 µB/Fe ion of pure Fe oxide nanoparticles synthesized under similar conditions. At Fe ≥ 2.5%, the magnetic moment was significantly reduced. This work shows that (1) pure SnO2 can produce an intrinsic ferromagnetic behavior that varies with differences in surface structure, (2) very low Fe doping results in high magnetic moments, (3) higher Fe doping reduces magnetic moment and destroys ferromagnetism, and (4) there is an interesting correlation between changes in magnetic moment, bandgap, and lattice parameters. These results support the possibility that the observed ferromagnetism in SnO2 might be influenced by modification of the electronic structure by dopant, size, and surface structure
Effect of potassium nitrate intake on lactating dairy cows
A report on Department of Dairy Husbandry Research Project 55, Diet and Growth--p. [2].Digitized 2007 AES
Myocardial Perfusion Pressure: A Predictor of 24Hour Survival During Prolonged Cardiac Arrest in Dogs
Myocardial perfusion pressure, defined as the aortic diastolic pressure minus the right atria1 diastolic pressure, correlates with coronary blood flow during cardiopulmonary resuscitation (CPR) and predicts initial resuscitation success. Whether this hemodynamic parameter can predict 24-h survival is not known. We examined the relationship between myocardial perfusion pressure and 24-h survival in 60 dogs that underwent prolonged (20 min) ventricular fibrillation and CPR. Forty-two (70%) animals were initially resuscitated and 20 (33%) survived for 24 h. Myocardial perfusion pressure was significantly greater when measured at 5, 10, 15 and 20 min of ventricular fibrillation in the resuscitated animals than in the non-resuscitated animals (P \u3c 0.01). Likewise, the myocardial perfusion pressure was also greater in the animals that survived 24 h than in animals that were resuscitated, but died before 24 h (P \u3c 0.02). Myocardial perfusion pressure measured after 10 min of CPR was 11 2 mmHg in animals never resuscitated, 20 3 mmHg in those resuscitated that died before 24 h and 29 2 mmHg in those that survived 24 h (P \u3c 0.05). A myocardial perfusion pressure at 10 min of CPR of 20 mmHg or less is an excellent predictor of poor survival (negative predictive value = 96%). Myocardial perfusion pressure is a useful index of CPR effectiveness and therefore may be a useful guide in helping to optimize resuscitation efforts
The Compatibility of Friedmann Cosmological Models with Observed Properties of Gamma-Ray Bursts and a Large Hubble Constant
The distance scale to cosmic gamma-ray bursts (GRB's) is still uncertain by many orders of magnitude; however, one viable scenario places GRB's at cosmological distances, thereby permitting them to be used as tracers of the cosmological expansion over a significant range of redshifts zeta. Also, several recent measurements of the Hubble constant H(sub 0) appearing in the referred literature report values of 70-80 km/s /Mpc. Although there is significant debate regarding these measurements, we proceed here under the assumption that they are evidence of a large value for H(sub 0). This is done in order to investigate the additional constraints on cosmological models that can be obtained under this hypothesis when combined with the age of the universe and the brightness distribution of cosmological gamma-ray bursts. We show that the range of cosmological models that can be consistent with the GRB brightness distribution, a Hubble constant of 70-80 km/s/Mpc, and a minimum age of the universe of 13-15 Gyr is constrained significantly, largely independent of a wide range of assumptions regarding the evolutionary nature of the burst population. Low-density, Lambda greater than 0 cosmological models with deceleration parameter in the range -1 less than q(sub 0) less than 0 and density parameter sigma(sub 0) in the range approximately equals 0.10-0.25(Omega(sub 0) approximately equals 0.2-0.5) are strongly favored
Unusual Crystallite Growth and Modification of Ferromagnetism Due to Aging in Pure and Doped Zno Nanoparticles
We report the unusual growth of pure and Fe-doped ZnO nanoparticles prepared by forced hydrolysis and the weakening of ferromagnetism due to aging in ambient conditions. More than four dozen nanoparticle samples in the size range of 4–20 nm were studied over 1 to 4 years. The as-prepared samples had significant changes in their crystallite sizes and magnetization as they aged in ambient conditions. Detailed studies using x ray diffraction and transmission electron microscopy (TEM) demonstrated that the crystallite size increased by as much as 1.4 times. Lattice parameters and strain also showed interesting changes. Magnetometry studies of Zn1−xFexO with x = 0–0.2 showed ferromagnetism at room temperature; however, keeping the samples in ambient conditions for one year resulted in modifications in the crystallite size and magnetization. For the Zn0.95Fe0.05O sample, the size changed from 7.9 nm to 9.0 nm, while the magnetization decreased from 1×10–3emu/g (memu/g) to 0.2 memu/g. Both magnetic and structural changes due to aging varied with the environment in which they were stored, indicating that these changes are related to the aging conditions
- …