12,786 research outputs found

    Iphimediidae of New Zealand (Crustacea, Amphipoda)

    Get PDF
    New Zealand species of Iphimediidae, Amphipoda, are revised. Based on new material from the Chatham Rise, east of New Zealand, two new species are described in detail: Labriphimedia meikae sp. nov. and Labriphimedia martinae sp. nov. A key to the six species belonging to three genera of New Zealand Iphimediidae is provided

    Opportunities and threats in the beer-banana value chain in Central Uganda

    Get PDF
    Poster presented at CIALCA Conference 2011. Kigali (Rwanda). 24-27 Oct 2011

    Mass transfer in bubble column for industrial conditions—effects of organic medium, gas and liquid flowrates and column design

    Get PDF
    Most of available gas–liquid mass transfer data in bubble column have been obtained in aqueous media and in liquid batch conditions, contrary to industrial chemical reactor conditions. This work provides new data more relevant for industrial conditions, including comparison of water and organic media, effects of large liquid and gas velocities, perforated plates and sparger hole diameter. The usual dynamic O2 methods for mass transfer investigation were not convenient in this work (cyclohexane, liquid circulation). Steadystate mass transfer of CO2 in an absorption–desorption loop has been quantified by IR spectrometry. Using a simple RTD characterization, mass transfer efficiency and kLa have been calculated in a wide range of experimental conditions. Due to large column height and gas velocity, mass transfer efficiency is high, ranging between 40% and 90%. kLa values stand between 0.015 and 0.050 s−1 and depend mainly on superficial gas velocity. No significant effects of column design and media have been shown. At last, using both global and local hydrodynamics data, mass transfer connection with hydrodynamics has been investigated through kLa/G and kLa/a

    On the reliability of an optical fibre probe in bubble column under industrial relevant operating conditions

    Get PDF
    When bubble columns are operated under industrial relevant conditions (high gas and liquid flow rates, large bubbles and vortices,. . .), local data, and especially bubble size values, are difficult to obtain. However, such data are essential for the comprehension of two-phase flow phenomena in order to design or to improve industrial installations. When high gas flow rates and organic liquids are used, intrusive optic probes are considered. This work investigates different ways to derive reliable local information on gas phase from double optic probe raw data. As far as possible, these results have been compared with global data, easier to measure in such conditions. Local gas hold-up, eG, and bubble frequency, fB, are easily obtained, but bubble velocity and bubble diameter determination is not obvious. For a better reliability, the final treatment that is proposed for velocity and size estimation is based on mean values only: the bubble velocity is considered as the most probable velocity ~v issued from raw signals inter-correlation function and the mean Sauter diameter is calculated through dSM ¼ 3~veG 2f B
    corecore