2,019 research outputs found

    On minimal affinizations of representations of quantum groups

    Full text link
    In this paper we study minimal affinizations of representations of quantum groups (generalizations of Kirillov-Reshetikhin modules of quantum affine algebras introduced by Chari). We prove that all minimal affinizations in types A, B, G are special in the sense of monomials. Although this property is not satisfied in general, we also prove an analog property for a large class of minimal affinization in types C, D, F. As an application, the Frenkel-Mukhin algorithm works for these modules. For minimal affinizations of type A, B we prove the thin property (the l-weight spaces are of dimension 1) and a conjecture of Nakai-Nakanishi (already known for type A). The proof of the special property is extended uniformly for more general quantum affinizations of quantum Kac-Moody algebras.Comment: 38 pages; references and additional results added. Accepted for publication in Communications in Mathematical Physic

    Extended T-systems

    Get PDF
    We use the theory of q-characters to establish a number of short exact sequences in the category of finite-dimensional representations of the quantum affine groups of types A and B. That allows us to introduce a set of 3-term recurrence relations which contains the celebrated T-system as a special case.Comment: 36 pages, latex; v2: version to appear in Selecta Mathematic

    On multigraded generalizations of Kirillov-Reshetikhin modules

    Full text link
    We study the category of Z^l-graded modules with finite-dimensional graded pieces for certain Z+^l-graded Lie algebras. We also consider certain Serre subcategories with finitely many isomorphism classes of simple objects. We construct projective resolutions for the simple modules in these categories and compute the Ext groups between simple modules. We show that the projective covers of the simple modules in these Serre subcategories can be regarded as multigraded generalizations of Kirillov-Reshetikhin modules and give a recursive formula for computing their graded characters

    Representations of Double Affine Lie algebras

    Full text link
    We study representations of the double affine Lie algebra associated to a simple Lie algebra. We construct a family of indecomposable integrable representations and identify their irreducible quotients. We also give a condition for the indecomposable modules to be irreducible, this is analogous to a result in the representation theory of quantum affine algebras. Finally, in the last section of the paper, we show, by using the notion of fusion product, that our modules are generically reducible

    Y(so(5)) symmtry of the nonlinear Schro¨\ddot{o}dinger model with four-cmponents

    Full text link
    The quantum nonlinear Schro¨\ddot{o}dinger(NLS) model with four-component fermions exhibits a Y(so(5))Y(so(5)) symmetry when considered on an infintite interval. The constructed generators of Yangian are proved to satisfy the Drinfel'd formula and furthermore, the RTTRTT relation with the general form of rational R-matrix given by Yang-Baxterization associated with so(5)so(5) algebraic structure.Comment: 10 pages, no figure

    On quantization of r-matrices for Belavin-Drinfeld Triples

    Full text link
    We suggest a formula for quantum universal RR-matrices corresponding to quasitriangular classical rr-matrices classified by Belavin and Drinfeld for all simple Lie algebras. The RR-matrices are obtained by twisting the standard universal RR-matrix.Comment: 12 pages, LaTe

    Dorey's Rule and the q-Characters of Simply-Laced Quantum Affine Algebras

    Get PDF
    Let Uq(ghat) be the quantum affine algebra associated to a simply-laced simple Lie algebra g. We examine the relationship between Dorey's rule, which is a geometrical statement about Coxeter orbits of g-weights, and the structure of q-characters of fundamental representations V_{i,a} of Uq(ghat). In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product V_{i,a} x V_{j,b} x V_{k,c}.Comment: 30 pages, latex; v2, to appear in Communications in Mathematical Physic

    XXZ Bethe states as highest weight vectors of the sl2sl_2 loop algebra at roots of unity

    Full text link
    We show that every regular Bethe ansatz eigenvector of the XXZ spin chain at roots of unity is a highest weight vector of the sl2sl_2 loop algebra, for some restricted sectors with respect to eigenvalues of the total spin operator SZS^Z, and evaluate explicitly the highest weight in terms of the Bethe roots. We also discuss whether a given regular Bethe state in the sectors generates an irreducible representation or not. In fact, we present such a regular Bethe state in the inhomogeneous case that generates a reducible Weyl module. Here, we call a solution of the Bethe ansatz equations which is given by a set of distinct and finite rapidities {\it regular Bethe roots}. We call a nonzero Bethe ansatz eigenvector with regular Bethe roots a {\it regular Bethe state}.Comment: 40pages; revised versio
    corecore