2,019 research outputs found
On minimal affinizations of representations of quantum groups
In this paper we study minimal affinizations of representations of quantum
groups (generalizations of Kirillov-Reshetikhin modules of quantum affine
algebras introduced by Chari). We prove that all minimal affinizations in types
A, B, G are special in the sense of monomials. Although this property is not
satisfied in general, we also prove an analog property for a large class of
minimal affinization in types C, D, F. As an application, the Frenkel-Mukhin
algorithm works for these modules. For minimal affinizations of type A, B we
prove the thin property (the l-weight spaces are of dimension 1) and a
conjecture of Nakai-Nakanishi (already known for type A). The proof of the
special property is extended uniformly for more general quantum affinizations
of quantum Kac-Moody algebras.Comment: 38 pages; references and additional results added. Accepted for
publication in Communications in Mathematical Physic
Extended T-systems
We use the theory of q-characters to establish a number of short exact
sequences in the category of finite-dimensional representations of the quantum
affine groups of types A and B. That allows us to introduce a set of 3-term
recurrence relations which contains the celebrated T-system as a special case.Comment: 36 pages, latex; v2: version to appear in Selecta Mathematic
On multigraded generalizations of Kirillov-Reshetikhin modules
We study the category of Z^l-graded modules with finite-dimensional graded
pieces for certain Z+^l-graded Lie algebras. We also consider certain Serre
subcategories with finitely many isomorphism classes of simple objects. We
construct projective resolutions for the simple modules in these categories and
compute the Ext groups between simple modules. We show that the projective
covers of the simple modules in these Serre subcategories can be regarded as
multigraded generalizations of Kirillov-Reshetikhin modules and give a
recursive formula for computing their graded characters
Representations of Double Affine Lie algebras
We study representations of the double affine Lie algebra associated to a
simple Lie algebra. We construct a family of indecomposable integrable
representations and identify their irreducible quotients. We also give a
condition for the indecomposable modules to be irreducible, this is analogous
to a result in the representation theory of quantum affine algebras. Finally,
in the last section of the paper, we show, by using the notion of fusion
product, that our modules are generically reducible
Y(so(5)) symmtry of the nonlinear Schrdinger model with four-cmponents
The quantum nonlinear Schrdinger(NLS) model with four-component
fermions exhibits a symmetry when considered on an infintite
interval. The constructed generators of Yangian are proved to satisfy the
Drinfel'd formula and furthermore, the relation with the general form of
rational R-matrix given by Yang-Baxterization associated with algebraic
structure.Comment: 10 pages, no figure
On quantization of r-matrices for Belavin-Drinfeld Triples
We suggest a formula for quantum universal -matrices corresponding to
quasitriangular classical -matrices classified by Belavin and Drinfeld for
all simple Lie algebras. The -matrices are obtained by twisting the standard
universal -matrix.Comment: 12 pages, LaTe
Dorey's Rule and the q-Characters of Simply-Laced Quantum Affine Algebras
Let Uq(ghat) be the quantum affine algebra associated to a simply-laced
simple Lie algebra g. We examine the relationship between Dorey's rule, which
is a geometrical statement about Coxeter orbits of g-weights, and the structure
of q-characters of fundamental representations V_{i,a} of Uq(ghat). In
particular, we prove, without recourse to the ADE classification, that the rule
provides a necessary and sufficient condition for the monomial 1 to appear in
the q-character of a three-fold tensor product V_{i,a} x V_{j,b} x V_{k,c}.Comment: 30 pages, latex; v2, to appear in Communications in Mathematical
Physic
XXZ Bethe states as highest weight vectors of the loop algebra at roots of unity
We show that every regular Bethe ansatz eigenvector of the XXZ spin chain at
roots of unity is a highest weight vector of the loop algebra, for some
restricted sectors with respect to eigenvalues of the total spin operator
, and evaluate explicitly the highest weight in terms of the Bethe roots.
We also discuss whether a given regular Bethe state in the sectors generates an
irreducible representation or not. In fact, we present such a regular Bethe
state in the inhomogeneous case that generates a reducible Weyl module. Here,
we call a solution of the Bethe ansatz equations which is given by a set of
distinct and finite rapidities {\it regular Bethe roots}. We call a nonzero
Bethe ansatz eigenvector with regular Bethe roots a {\it regular Bethe state}.Comment: 40pages; revised versio
- …