10 research outputs found
A linked data representation for summary statistics and grouping criteria
Summary statistics are fundamental to data science, and are the buidling blocks of statistical reasoning. Most of the data and statistics made available on government web sites are aggregate, however, until now, we have not had a suitable linked data representation available. We propose a way to express summary statistics across aggregate groups as linked data using Web Ontology Language (OWL) Class based sets, where members of the set contribute to the overall aggregate value. Additionally, many clinical studies in the biomedical field rely on demographic summaries of their study cohorts and the patients assigned to each arm. While most data query languages, including SPARQL, allow for computation of summary statistics, they do not provide a way to integrate those values back into the RDF graphs they were computed from. We represent this knowledge, that would otherwise be lost, through the use of OWL 2 punning semantics, the expression of aggregate grouping criteria as OWL classes with variables, and constructs from the Semanticscience Integrated Ontology (SIO), and the World Wide Web Consortium’s provenance ontology, PROV-O, providing interoperable representations that are well supported across the web of Linked Data. We evaluate these semantics using a Resource Description Framework (RDF) representation of patient case information from the Genomic Data Commons, a data portal from the National Cancer Institute
Making Study Populations Visible through Knowledge Graphs
Treatment recommendations within Clinical Practice Guidelines (CPGs) are
largely based on findings from clinical trials and case studies, referred to
here as research studies, that are often based on highly selective clinical
populations, referred to here as study cohorts. When medical practitioners
apply CPG recommendations, they need to understand how well their patient
population matches the characteristics of those in the study cohort, and thus
are confronted with the challenges of locating the study cohort information and
making an analytic comparison. To address these challenges, we develop an
ontology-enabled prototype system, which exposes the population descriptions in
research studies in a declarative manner, with the ultimate goal of allowing
medical practitioners to better understand the applicability and
generalizability of treatment recommendations. We build a Study Cohort Ontology
(SCO) to encode the vocabulary of study population descriptions, that are often
reported in the first table in the published work, thus they are often referred
to as Table 1. We leverage the well-used Semanticscience Integrated Ontology
(SIO) for defining property associations between classes. Further, we model the
key components of Table 1s, i.e., collections of study subjects, subject
characteristics, and statistical measures in RDF knowledge graphs. We design
scenarios for medical practitioners to perform population analysis, and
generate cohort similarity visualizations to determine the applicability of a
study population to the clinical population of interest. Our semantic approach
to make study populations visible, by standardized representations of Table 1s,
allows users to quickly derive clinically relevant inferences about study
populations.Comment: 16 pages, 4 figures, 1 table, accepted to the ISWC 2019 Resources
Track (https://iswc2019.semanticweb.org/call-for-resources-track-papers/
Semantically enabling clinical decision support recommendations
Abstract Background Clinical decision support systems have been widely deployed to guide healthcare decisions on patient diagnosis, treatment choices, and patient management through evidence-based recommendations. These recommendations are typically derived from clinical practice guidelines created by clinical specialties or healthcare organizations. Although there have been many different technical approaches to encoding guideline recommendations into decision support systems, much of the previous work has not focused on enabling system generated recommendations through the formalization of changes in a guideline, the provenance of a recommendation, and applicability of the evidence. Prior work indicates that healthcare providers may not find that guideline-derived recommendations always meet their needs for reasons such as lack of relevance, transparency, time pressure, and applicability to their clinical practice. Results We introduce several semantic techniques that model diseases based on clinical practice guidelines, provenance of the guidelines, and the study cohorts they are based on to enhance the capabilities of clinical decision support systems. We have explored ways to enable clinical decision support systems with semantic technologies that can represent and link to details in related items from the scientific literature and quickly adapt to changing information from the guidelines, identifying gaps, and supporting personalized explanations. Previous semantics-driven clinical decision systems have limited support in all these aspects, and we present the ontologies and semantic web based software tools in three distinct areas that are unified using a standard set of ontologies and a custom-built knowledge graph framework: (i) guideline modeling to characterize diseases, (ii) guideline provenance to attach evidence to treatment decisions from authoritative sources, and (iii) study cohort modeling to identify relevant research publications for complicated patients. Conclusions We have enhanced existing, evidence-based knowledge by developing ontologies and software that enables clinicians to conveniently access updates to and provenance of guidelines, as well as gather additional information from research studies applicable to their patients’ unique circumstances. Our software solutions leverage many well-used existing biomedical ontologies and build upon decades of knowledge representation and reasoning work, leading to explainable results
Linked Open Data Validity -- A Technical Report from ISWS 2018
Linked Open Data (LOD) is the publicly available RDF data in the Web. Each LOD entity is identfied by a URI and accessible via HTTP. LOD encodes globalscale knowledge potentially available to any human as well as artificial intelligence that may want to benefit from it as background knowledge for supporting their tasks. LOD has emerged as the backbone of applications in diverse fields such as Natural Language Processing, Information Retrieval, Computer Vision, Speech Recognition, and many more. Nevertheless, regardless of the specific tasks that LOD-based tools aim to address, the reuse of such knowledge may be challenging for diverse reasons, e.g. semantic heterogeneity, provenance, and data quality. As aptly stated by Heath et al. Linked Data might be outdated, imprecise, or simply wrong": there arouses a necessity to investigate the problem of linked data validity. This work reports a collaborative effort performed by nine teams of students, guided by an equal number of senior researchers, attending the International Semantic Web Research School (ISWS 2018) towards addressing such investigation from different perspectives coupled with different approaches to tackle the issue
Linked Open Data Validity -- A Technical Report from ISWS 2018
Linked Open Data (LOD) is the publicly available RDF data in the Web. Each LOD entity is identfied by a URI and accessible via HTTP. LOD encodes globalscale knowledge potentially available to any human as well as artificial intelligence that may want to benefit from it as background knowledge for supporting their tasks. LOD has emerged as the backbone of applications in diverse fields such as Natural Language Processing, Information Retrieval, Computer Vision, Speech Recognition, and many more. Nevertheless, regardless of the specific tasks that LOD-based tools aim to address, the reuse of such knowledge may be challenging for diverse reasons, e.g. semantic heterogeneity, provenance, and data quality. As aptly stated by Heath et al. Linked Data might be outdated, imprecise, or simply wrong": there arouses a necessity to investigate the problem of linked data validity. This work reports a collaborative effort performed by nine teams of students, guided by an equal number of senior researchers, attending the International Semantic Web Research School (ISWS 2018) towards addressing such investigation from different perspectives coupled with different approaches to tackle the issue