32 research outputs found

    Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements: Engineered, Highly Reactive Substrates of Microbial Transglutaminase

    Get PDF
    Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side‐chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site‐specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100‐fold increase in incorporation of a recently developed aminated benzo[a ]imidazo[2,1,5‐cd ]indolizine‐type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α‐helical, ÎČ‐sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q‐GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG‐reactive glutamines can be readily introduced into a protein domain for fluorescent labeling

    Variability of protein level and phosphorylation status caused by biopsy protocol design in human skeletal muscle analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bergström needle biopsy is widely used to sample skeletal muscle in order to study cell signaling directly in human tissue. Consequences of the biopsy protocol design on muscle protein quantity and quality remain unclear. The aim of the present study was to assess the impact of different events surrounding biopsy protocol on the stability of the Western blot signal of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, glycogen synthase kinase-3ÎČ (GSK-3ÎČ), muscle RING finger protein 1 (MuRF1) and p70 S6 kinase (p70 S6K). Six healthy subjects underwent four biopsies of the <it>vastus lateralis</it>, distributed into two distinct visits spaced by 48 hrs. At visit 1, a basal biopsy in the right leg was performed in the morning (R1) followed by a second in the left leg in the afternoon (AF). At visit 2, a second basal biopsy (R2) was collected from the right leg. Low intensity mobilization (3 × 20 right leg extensions) was performed and a final biopsy (Mob) was collected using the same incision site as R2.</p> <p>Results</p> <p>Akt and p70 S6K phosphorylation levels were increased by 83% when AF biopsy was compared to R1. Mob condition induced important phosphorylation of p70 S6K when compared to R2. Comparison of R1 and R2 biopsies revealed a relative stability of the signal for both total and phosphorylated proteins.</p> <p>Conclusions</p> <p>This study highlights the importance to standardize muscle biopsy protocols in order to minimize the method-induced variation when analyzing Western blot signals.</p

    Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

    Get PDF
    The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care

    Knock Down of Heat Shock Protein 27 (HspB1) Induces Degradation of Several Putative Client Proteins

    Get PDF
    Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target, but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6, transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells, the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of specific polypeptides through client-chaperone type of interactions

    Highly Efficient Synthesis of O

    No full text

    Mild Method for the Synthesis of Thiazolines from Secondary and Tertiary Amides

    No full text

    Catalytic Enantioselective Addition of Dialkylzinc to N

    No full text
    corecore