210 research outputs found

    Laser-induced spark ignition of pulsed methane jets in homogeneous and isotropic turbulence without mean flow

    Get PDF
    The influence of surrounding air turbulence on laser-induced spark ignition of a pulsed methane jet was investigated in an air environment where the turbulence is homogeneous and isotropic without mean flow. The methane jet Reynolds number (Rejet) was set at 160, while the surrounding air turbulent Reynolds number was varied in the range of Reλ = 0 - 220. Minimum Ignition Energy (MIE) was evaluated at four ignition locations by measuring the ignition probability and correlated with the local equivalence ratio (Φ) measured at three ignition locations using Laserinduced Breakdown Spectroscopy (LIBS) technique. The relationship between MIE and the local equivalence ratio obtained in quiescent air environment was similar to that reported in premixed methane/air mixtures. The impact of the surrounding air turbulence on MIE varies for different ignition locations, because the turbulence not only affects the mixing process and thereby the local equivalence ratio, but also increases the heat loss from the ignition point. The MIE decreased with increasing level of air turbulence, when the effect of local mixture composition becoming closer to stoichiometry was more significant than the adverse effect of increasing heat loss. Otherwise, the MIE increased with the level of air turbulence due to the dominance of the enhanced heat loss. The rate of increase in MIE became higher, if the local mixture composition moved further away from stoichiometry when turbulence was present. Successful ignition was also observed at locations where the mixture is relatively difficult to be ignited (Φmean = 2.38 and Φmean = 0.02), which may be attributed to the finite size of the plasma

    Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing

    Get PDF
    Genomic neighbour typing can be used to infer the antimicrobial susceptibility and resistance of a bacterial sample based on the genomes of closest relatives. Combined with MinION sequencing, it can rapidly determine microbial resistance for clinical samples within 4 h. Surveillance of drug-resistant bacteria is essential for healthcare providers to deliver effective empirical antibiotic therapy. However, traditional molecular epidemiology does not typically occur on a timescale that could affect patient treatment and outcomes. Here, we present a method called 'genomic neighbour typing' for inferring the phenotype of a bacterial sample by identifying its closest relatives in a database of genomes with metadata. We show that this technique can infer antibiotic susceptibility and resistance for both Streptococcus pneumoniae and Neisseria gonorrhoeae. We implemented this with rapid k-mer matching, which, when used on Oxford Nanopore MinION data, can run in real time. This resulted in the determination of resistance within 10 min (91% sensitivity and 100% specificity for S. pneumoniae and 81% sensitivity and 100% specificity for N. gonorrhoeae from isolates with a representative database) of starting sequencing, and within 4 h of sample collection (75% sensitivity and 100% specificity for S. pneumoniae) for clinical metagenomic sputum samples. This flexible approach has wide application for pathogen surveillance and may be used to greatly accelerate appropriate empirical antibiotic treatment

    Navigating paediatric virology through the COVID‑19 era (Review).

    Get PDF
    The present review article presents the key messages of the 8th Workshop on Paediatric Virology organised virtually by the Institute of Paediatric Virology based on the island of Euboea in Greece. The major topics covered during the workshop were the following: i) New advances in antiviral agents and vaccines against cytomegalovirus; ii) hantavirus nephropathy in children; iii) human rhinovirus infections in children requiring paediatric intensive care; iv) complications and management of human adenovirus infections; v) challenges of post‑coronavirus disease 2019 (COVID‑19) syndrome in children and adolescents; and vi) foetal magnetic resonance imaging in viral infections involving the central nervous system. The COVID‑19 era requires a more intensive, strategic, global scientific effort in the clinic and in the laboratory, focusing on the diagnosis, management and prevention of viral infections in neonates and children

    Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12239-012-0070-zSpray sizing that records fluorescent emission and scattered light has been widely applied to spray diagnostics over the last two decades. Different experimental strategies have been developed, but comparing the different solutions offered has remained of interest to experimentalists. In this work, a comparison of two fluorescence strategies for measuring droplet size in the liquid phase of a last-generation DI diesel spray is conducted. The natural fluorescent emission of a commercial diesel fuel and the fluorescence emitted by a tracer (Rhodamine B) are compared using theoretical and experimental approaches. The LIF/Mie ratio commonly called Planar Droplet Sizing (PDS) technique is applied in two different ways to elucidate the possible advantages of using a fluorescent dopant. The sprays were injected under non-evaporative conditions into a constant pressure vessel that simulates densities present at the moment of injection in currently used passenger car diesel engines. Characterization of the signal properties was performed by measuring the absorption coefficient, fluorescence emission spectrum, quantum yield and lifetime of both configurations. The scattered light and fluorescence intensities were calculated to verify the dependencies of the droplet surface and volume. When applying the two techniques to quantify droplet size in dense diesel sprays, the results show that signal weakness and lack of control over the properties of natural fluorescence produce distortion in the shape of the spray and cause measurements to be unreliable. © 2012 The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg.This research has been funded in the frame of the project PROFUEL reference TRA2011-26293 from Ministerio de Ciencia e Innovacion. The injectors are part of the ECN international project.Pastor Soriano, JV.; Payri, R.; Salavert Fernandez, J.; Manin, J. (2012). Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray. International Journal of Automotive Technology. 13(5):713-724. https://doi.org/10.1007/s12239-012-0070-zS713724135Albrecht, H. E., Damaschke, N., Borys, M. and Tropea, C. (2003). Laser Doppler and Phase Doppler Measurement Techniques. Springer. Berlin.Barnes, M. D., Whitten, W. B. and Ramsey, J. M. (1994). Enhanced fluorescence yields through cavity quantumelectrodynamic effects in microdroplets. J. Optical Society of America B 11,7, 1297–1304.Benajes, J., Molina, S., Novella, R., Amorim, R., Ben Hadj Hamouda, H. and Hardy, J. (2010). Comparison of two injection systems in an HSDI diesel engine using split injection and different injector nozzles. Int. J. Automotive Technology 11,2, 139–146.Charalampous, G. and Hardalupas, Y. (2011). Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique). Applied Optics, 50, 3622–3637.Chen, G., Mazumder, M., Chang, R. K., Swindal, J. C. and Acker, W. P. (1996). Laser diagnostics for droplet characterization: Application of morphology dependent resonances. Progress in Energy and Combustion Science 22,2, 163–188.Desantes, J. M., Payri, R., Garcia, J. M. and Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel 86,7–8, 1093–1101.Domann, R. and Hardalupas, Y. A. (2000). Study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique. Part. Part. Syst. Charact. 3–11.Domann, R. and Hardalupas, Y. A. (2001). Spatial distribution of fluorescence within large doplets and its dependence on dye concentration. Applied Optics 40,21, 3586–3597.Domann, R. and Hardalupas, Y. A. (2002). Quantitative measurement of planar droplet sauter mean diameter in sprays using planar droplet sizing. 11th Int. Symp. Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.Eckbreth, A. C. (1988). Laser Diagnostics for Combustion Species and Temperature. Abacus. Cambridge. Mass.Greenhalgh, D. A. (1999). Planar measurements of fuel vapour, liquid fuel, liquid droplet size and soot. Planar Optical Measurement Methods for Gas Turbine Components, 1–7.Im, K., Lin, K., Lai, M. and Chon, M. (2011). Breakup modeling of a liquid jet in cross flow. Int. J. Automotive Technology 12,4, 489–496.Jermy, M. C. and Greenhalgh, D. A. (2000). Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement. Appl. Phys. B, 71, 703–710.Kim, Y., Kim, K. and Lee, K. (2011). Effect of a 2-stage injection strategy on the combustion and flame characteristics in a PCCI engine. Int. J. Automotive Technology 12,5, 639–644.Ko, F. H., Weng, L. Y., Ko, C. J. and Chu, T. C. (2006). Characterization of imprinting polymeric temperature variation with fluorescent Rhodamine B molecule. Microelectronic Engineering, 83, 864–868.Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. 3rd Edn. Springer.Lee, S. H., Teong, J., Lee, J. T., Ryou, H. S. and Hong, K. (2005). Investigation on spray characteristics under ultrahigh injection pressure conditions. Int. J. Automotive Technology 6,2, 125–131.Lee, B., Song, J., Chang, Y. and Jeon, C. (2010). Effect of the number of fuel injector holes on characteristics of combustion and emissions in a diesel engine. Int. J. Automotive Technology 11,6, 783–791.LeGal, P., Farrugia, N. and Greenhalgh, D. A. (1999). Laser sheet dropsizing of dense sprays. Optics and Laser Techn., 31, 75–83.Lockett, R. D., Richter, J. and Greenhalgh, D. A. (1998). The characterisation of a diesel spray using combined laser induced fluorescence and laser sheet dropsizing. Conf. Lasers and Electro-Optics Europe.Magde, D., Rojas, G. E. and Seybold, P. (1999). Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem. Photobiol., 70, 737.Naber, J. and Siebers, D. (1996). Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Paper No. 960034.Pastor, J. V., López, J. J., Juliá, J. E. and Benajes, J. V. (2002). Planar laser-induced fluorescence fuel concentration measurements in isothermal diesel sprays. Opt. Express 10,7, 309–323.Pastor, J. V., Payri, R., Araneo, L. and Manin, J. (2009). Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation. Optical Engineering 48,1, 013601.Payri, R., Garcia, J. M., Salvador, F. J. and Gimeno, J. (2005a). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84, 551–561.Payri, R., Salvador, F. J., Gimeno, J. and Soare, V. (2005b). Determination of diesel sprays characteristics in real engine in-cylinder air density and pressure conditions. J. Mech. Sci. Technol., 19, 2040–2052.Payri, R., Tormos, B., Salvador, F. J. and Araneo, L. (2008). Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel 87,15, 3176–3182.Payri, F., Pastor, J., Payri, R. and Manin, J. (2011). Determination of the optical depth of a DI diesel spray. J. Mech. Sci. Technol., 25, 209–219.Potz, D., Chirst, W. and Dittus, B. (2000). Diesel nozzle: The determining interface between injection system and combustion chamber. Conf. Thermo and Fluid-dynamic Processes in Diesel Engines, Valencia, Spain.Ramírez, A. I., Som, S., Aggarwal, S. K., Kastengren, A. L., El-Hannouny, E. M., Longman, D. E. and Powell, C. F. (2009). Quantitative X-ray measurements of highpressure fuel sprays from a production heavy duty diesel injector. Experiments in Fluids 47,1, 119–134.Schulz, C. and Sick, V. (2005). Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 31, 75–121.Sjoback, R. and Nygren, J. and Kubista, M. (1998). Characterization of fluorescein—oligonucleotide conjugates and measurement of local electrostatic potential. Biopolymers, 46, 445–453.Soare, V. (2007). Phase Doppler Measurement in Diesel Dense Sprays: Optimisation of Measurements and Study of the Orifice Geometry Influence Over the Spray at Microscopic Level. Ph.D. Dissertion. E.T.S. Ingenieros Industriales. Universidad Politécnica de Valencia. Spain.Williams, A. T. R., Winfield, S. A. and Miller, J. N. (1983). Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst., 108, 1067.Yeh, C. N., Kosaka, H. and Kamimoto, T. A. (1993). Fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray. Proc. 3rd Cong. Opt. Part. Sizing, Yokohama, Japan, 335–361

    Measuring sub-mm structural displacements using QDaedalus: a digital clip-on measuring system developed for total stations

    Get PDF
    The monitoring of rigid structures of modal frequencies greater than 5 Hz and sub-mm displacement is mainly based so far on relative quantities from accelerometers, strain gauges etc. Additionally geodetic techniques such as GPS and Robotic Total Stations (RTS) are constrained by their low accuracy (few mm) and their low sampling rates. In this study the application of QDaedalus is presented, which constitutes a measuring system developed at the Geodesy and Geodynamics Lab, ETH Zurich and consists of a small CCD camera and Total Station, for the monitoring of the oscillations of a rigid structure. In collaboration with the Institute of Structural Engineering of ETH Zurich and EMPA, the QDaedalus system was used for monitoring of the sub-mm displacement of a rigid prototype beam and the estimation of its modal frequencies up to 30 Hz. The results of the QDaedalus data analysis were compared to those of accelerometers and proved to hold sufficient accuracy and suitably supplementing the existing monitoring techniques

    Burden of infectious disease studies in Europe and the United Kingdom: a review of methodological design choices

    Full text link
    This systematic literature review aimed to provide an overview of the characteristics and methods used in studies applying the disability-adjusted life years (DALY) concept for infectious diseases within European Union (EU)/European Economic Area (EEA)/European Free Trade Association (EFTA) countries and the United Kingdom. Electronic databases and grey literature were searched for articles reporting the assessment of DALY and its components. We considered studies in which researchers performed DALY calculations using primary epidemiological data input sources. We screened 3053 studies of which 2948 were excluded and 105 studies met our inclusion criteria. Of these studies, 22 were multi-country and 83 were single-country studies, of which 46 were from the Netherlands. Food- and water-borne diseases were the most frequently studied infectious diseases. Between 2015 and 2022, the number of burden of infectious disease studies was 1.6 times higher compared to that published between 2000 and 2014. Almost all studies (97%) estimated DALYs based on the incidence- and pathogen-based approach and without social weighting functions; however, there was less methodological consensus with regards to the disability weights and life tables that were applied. The number of burden of infectious disease studies undertaken across Europe has increased over time. Development and use of guidelines will promote performing burden of infectious disease studies and facilitate comparability of the results

    Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients:a feasibility and clinical validity study

    Get PDF
    BACKGROUND: Metagenomic sequencing of respiratory microbial communities for pathogen identification in pneumonia may help overcome the limitations of culture-based methods. We examined the feasibility and clinical validity of rapid-turnaround metagenomics with Nanopore™ sequencing of clinical respiratory specimens. METHODS: We conducted a case-control study of mechanically-ventilated patients with pneumonia (nine culture-positive and five culture-negative) and without pneumonia (eight controls). We collected endotracheal aspirates and applied a microbial DNA enrichment method prior to metagenomic sequencing with the Oxford Nanopore MinION device. For reference, we compared Nanopore results against clinical microbiologic cultures and bacterial 16S rRNA gene sequencing. RESULTS: Human DNA depletion enabled in depth sequencing of microbial communities. In culture-positive cases, Nanopore revealed communities with high abundance of the bacterial or fungal species isolated by cultures. In four cases with resistant clinical isolates, Nanopore detected antibiotic resistance genes corresponding to the phenotypic resistance in antibiograms. In culture-negative pneumonia, Nanopore revealed probable bacterial pathogens in 1/5 cases and Candida colonization in 3/5 cases. In controls, Nanopore showed high abundance of oral bacteria in 5/8 subjects, and identified colonizing respiratory pathogens in other subjects. Nanopore and 16S sequencing showed excellent concordance for the most abundant bacterial taxa. CONCLUSIONS: We demonstrated technical feasibility and proof-of-concept clinical validity of Nanopore metagenomics for severe pneumonia diagnosis, with striking concordance with positive microbiologic cultures, and clinically actionable information obtained from sequencing in culture-negative samples. Prospective studies with real-time metagenomics are warranted to examine the impact on antimicrobial decision-making and clinical outcomes
    corecore