82 research outputs found
Skyrmions, Rational Maps & Scaling Identities
Starting from approximate Skyrmion solutions obtained using the rational map
ansatz, improved approximate Skyrmions are constructed using scaling arguments.
Although the energy improvement is small, the change of shape clarifies whether
the true Skyrmions are more oblate or prolate.Comment: 13 pages, 3 figure
Bilateral nephrectomy for adult polycystic kidney disease does not affect the graft function of transplant patients and does not result in sensitisation
Background. Native nephrectomy in Adult Polycystic Kidney Disease (ADPKD) patients is a major operation with controversy related to timing and indications. We present our single centre experience in transplanted patients and future candidates for transplantation. Methods. Retrospective analysis from an anonymised database of bilateral nephrectomies for ADPKD patients. Results were reported as median, range, and percentage. Differences between groups were tested using ANOVA and t-test. Surgery was performed between January 2012 and July 2018. Results. Thirty-three patients underwent bilateral native nephrectomy for APKD. 18 had a functioning kidney transplant (transplant group, 55%) while 15 patients were on dialysis (dialysis group, 45%) at the time of surgery; 8 patients of the latter group (24% of the whole cohort) were eventually transplanted. 53% were males, with median age of 55 years (27-71). Indications to surgery were the following: space (symptoms related to the size of the native kidneys or need to create space for transplantation) (59%), recurrent cyst infection (36%), haematuria (15%), pain (24%), and weight loss associated with cystic alteration on imaging (3%). In the transplant group, postoperative kidney function was not affected; haemoglobin serum levels significantly dropped in the whole cohort: 121 (82-150) g/L, versus 108 (58-154) g/L (p<0.001), with 14 patients being transfused perioperatively. Elevation of anti-HLA antibodies was noted in one female patient on dialysis, with no change in DSA levels and no rejection after transplant for all 26 transplanted patients. Median postoperative length of hospital stay was 9 days (6-71). One patient died (3%) after six months. Median follow-up for the whole cohort was 282 days (13-1834). Histopathological examination revealed incidental renal neoplasms in five cases (15%): 1 pT1a papillary renal cell carcinoma and 4 papillary adenomas. Conclusions. Native nephrectomy for ADPKD could be safely performed in case of refractory symptoms, suspect of cancer or to create space for transplantation. It does not affect graft function or DSA status of transplanted patients or the prospect of transplantation of those on the waiting list
Rogue Waves in Nonlinear Schrodinger Models with Variable Coefficients : Application to Bose Einstein Condensates
We explore the form of rogue waves solution sin a select set of case examples of non linear Schrodinger equations with variable coefficients. We focus on systems with constant dispersion, and present three different models that describe atomic Bose Einstein condensates in different experimentally relevant settings. For these models, we identify exact rogue waves solutions. Our analytical findings are corroborated by direct numerical integration of the original equations, performed by two different schemes. Very good agreement between numerical results and analytical predictions for the emergence of the rogue waves is identified. Additionally, the nontrivial fate of small numerically induced perturbations to the exact rogue waves solutions is also discussed
Self-similar blow-up solutions in the generalized Korteweg-de Vries equation: Spectral analysis, normal form and asymptotics
In the present work we revisit the problem of the generalized Korteweg-de
Vries equation parametrically, as a function of the relevant nonlinearity
exponent, to examine the emergence of blow-up solutions, as traveling waveforms
lose their stability past a critical point of the relevant parameter , here
at . We provide a {\it normal form} of the associated collapse dynamics
and illustrate how this captures the collapsing branch bifurcating from the
unstable traveling branch. We also systematically characterize the
linearization spectrum of not only the traveling states, but importantly of the
emergent collapsing waveforms in the so-called co-exploding frame where these
waveforms are identified as stationary states. This spectrum, in addition to
two positive real eigenvalues which are shown to be associated with the
symmetries of translation and scaling invariance of the original
(non-exploding) frame features complex patterns of negative eigenvalues that we
also fully characterize. We show that the phenomenology of the latter is
significantly affected by the boundary conditions and is far more complicated
than in the corresponding symmetric Laplacian case of the nonlinear
Schr{\"o}dinger problem that has recently been explored. In addition, we
explore the dynamics of the unstable solitary waves for in the
co-exploding frame.Comment: 33 pages, 16 figure
GEM-E3 Model Documentation
The computable general equilibrium model GEM-E3 has been used in a large set of climate policy applications supporting Commission policy proposals during the last decade, as well as in other environmental and economic policy areas. It can be considered a multi-purpose macroeconomic model, designed to estimate the effects of sector-specific policies on the economy as a whole.
The main purpose of this publication is to provide extensive documentation of the model's equations and its underlying databases, in order to offer to the broader audience an accurate description of the model characteristics.JRC.J.1-Economics of Climate Change, Energy and Transpor
RF-MEMS switch actuation pulse optimization using Taguchi's method
Copyright @ 2011 Springer-VerlagReliability and longevity comprise two of the most important concerns when designing micro-electro-mechanical-systems (MEMS) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchi’s optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch
Regional climate-model performance in Greenland firn derived from in situ observations
Recent record-warm summers in Greenland (Khan et al. 2015) have started affecting the higher regions of the ice sheet (i.e. the accumulation area), where increased melt has altered the properties of firn (i.e. multi-year snow). At high altitudes, meltwater percolates in the porous snow and firn, where it refreezes. The result is mass conservation, as the refrozen meltwater is essentially stored (Harper et al. 2012). However, in some regions increased meltwater refreezing in shallow firn has created thick ice layers. These ice layers act as a lid, and can inhibit meltwater percolation to greater depths, causing it to run off instead (Machguth et al. 2016). Meltwater at the surface also results in more absorbed sunlight, and hence increased melt in the accumulation area (Charalampidis et al. 2015). These relatively poorly understood processes are important for ice-sheet mass-budget projections
Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign
PMCAMx-2008, a detailed three-dimensional chemical transport model (CTM), was applied to Europe to simulate the mass concentration and chemical composition of particulate matter (PM) during May 2008. The model includes a state-of-the-art organic aerosol module which is based on the volatility basis set framework treating both primary and secondary organic components as semivolatile and photochemically reactive. The model performance is evaluated against high time resolution aerosol mass spectrometer (AMS) ground and airborne measurements. Overall, organic aerosol is predicted to account for 32% of total PM<sub>1</sub> at ground level during May 2008, followed by sulfate (30%), crustal material and sea-salt (14%), ammonium (13%), nitrate (7%), and elemental carbon (4%). The model predicts that fresh primary OA (POA) is a small contributor to organic PM concentrations in Europe during late spring, and that oxygenated species (oxidized primary and biogenic secondary) dominate the ambient OA. The Mediterranean region is the only area in Europe where sulfate concentrations are predicted to be much higher than the OA, while organic matter is predicted to be the dominant PM<sub>1</sub> species in central and northern Europe. The comparison of the model predictions with the ground measurements in four measurement stations is encouraging. The model reproduces more than 94% of the daily averaged data and more than 87% of the hourly data within a factor of 2 for PM<sub>1</sub> OA. The model tends to predict relatively flat diurnal profiles for PM<sub>1</sub> OA in many areas, both rural and urban in agreement with the available measurements. The model performance against the high time resolution airborne measurements at multiple altitudes and locations is as good as its performance against the ground level hourly measurements. There is no evidence of missing sources of OA aloft over Europe during this period
- …