13 research outputs found

    Painful Purinergic Receptors

    No full text

    Potassium channels Kv1.1, Kv1.2 and Kv1.6 influence excitability of rat visceral sensory neurons

    No full text
    Voltage-gated potassium channels, Kv1.1, Kv1.2 and Kv1.6, were identified as PCR products from mRNA prepared from nodose ganglia. Immunocytochemical studies demonstrated expression of the proteins in all neurons from ganglia of neonatal animals (postnatal days 0-3) and in 85-90 % of the neurons from older animals (postnatal days 21-60). In voltage clamp studies, α-dendrotoxin (α-DTX), a toxin with high specificity for these members of the Kv1 family, was used to examine their contribution to K+ currents of the sensory neurons. α-DTX blocked current in both A- and C-type neurons. The current had characteristics of a delayed rectifier with activation positive to −50 mV and little inactivation during 250 ms pulses. In current-clamp experiments α-DTX, used to eliminate the current, had no effect on resting membrane potential and only small effects on the amplitude and duration of the action potential of A- and C-type neurons. However, there were prominent effects on excitability. α-DTX lowered the threshold for initiation of discharge in response to depolarizing current steps, reduced spike after-hyperpolarization and increased the frequency/pattern of discharge of A- and C-type neurons at membrane potentials above threshold. Model simulations were consistent with these experimental results and demonstrated how the other major K+ currents function in response to the loss of the α-DTX-sensitive current to effect these changes in action potential wave shape and discharge

    ()-(9S)-9-(3-Bromo-4-fluorophenyl)-2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637): a novel ATP-sensitive potassium channel opener efficacious in suppressing urinary bladder contractions. I. In vitro characterization

    No full text
    Alterations in the myogenic activity of the bladder smooth muscle are thought to serve as a basis for the involuntary detrusor contractions associated with the overactive bladder. Activation of ATP-sensitive K+ (KATP) channels has been recognized as a potentially viable mechanism to modulate membrane excitability in bladder smooth muscle. In this study, we describe the preclinical pharmacology of ()-(9S)-9-(3-bromo-4-fluorophenyl)-2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a novel 1,4-dihydropyridine KATP channel opener (KCO) that demonstrates enhanced bladder selectivity for the suppression of unstable bladder contractions in vivo relative to other reference KCOs. A-278637 activated KATP channels in bladder smooth muscle cells in a glyburide (glibenclamide)-sensitive manner as assessed by fluorescence membrane potential assays using bis-(1,3-dibutylbarbituric acid)trimethine oxonol (EC50 = 102 nM) and by whole cell patch clamp. Spontaneous (myogenic) phasic activity of pig bladder strips was suppressed (IC50 = 23 nM) in a glyburide-sensitive manner by A-278637. A-278637 also inhibited carbachol- and electrical field-stimulated contractions of bladder strips, although the respective potencies were 8- and 13-fold lower compared with inhibition of spontaneous phasic activity. As shown in the accompanying article [Brune ME, Fey TA, Brioni JD, Sullivan JP, Williams M, Carroll WA, Coghlan MJ, and Gopalakrishnan M (2002) J Pharmacol Exp Ther 303:387-394], A-278637 suppressed myogenic contractions in vivo in a model of bladder instability with superior selectivity compared with other KCOs, WAY-133537 [(R)-4-[3,4-dioxo-2-(1,2,2-trimethyl-propylamino)cyclobut-1-enylamino]-3-ethyl-benzonitrile] and ZD6169 [(S)-N-(4-benzoylphenyl)3,3,3-trifluro-2hydroxy-2-methyl-priopionamide]. A-278637 did not interact with other ion channels, including L-type calcium channels or other neurotransmitter receptor systems. The pharmacological profile of A-278637 represents an attractive basis for further investigations of selective KATP channel openers for the treatment of overactive bladder via myogenic etiology.</p
    corecore