1,173 research outputs found
Precessional switching of thin nanomagnets: analytical study
We study analytically the precessional switching of the magnetization of a
thin macrospin. We analyze its response when subjected to an external field
along its in-plane hard axis. We derive the exact trajectories of the
magnetization. The switching versus non switching behavior is delimited by a
bifurcation trajectory, for applied fields equal to half of the effective
anisotropy field. A magnetization going through this bifurcation trajectory
passes exactly along the hard axis and exhibits a vanishing characteristic
frequency at that unstable point, which makes the trajectory noise sensitive.
Attempting to approach the related minimal cost in applied field makes the
magnetization final state unpredictable. We add finite damping in the model as
a perturbative, energy dissipation factor. For a large applied field, the
system switches several times back and forth. Several trajectories can be gone
through before the system has dissipated enough energy to converge to one
attracting equilibrium state. For some moderate fields, the system switches
only once by a relaxation dominated precessional switching. We show that the
associated switching field increases linearly with the damping parameter. The
slope scales with the square root of the effective anisotropy. Our simple
concluding expressions are useful to assess the potential application of
precessional switching in magnetic random access memories
Lineshape distortion in a nonlinear auto-oscillator near generation threshold: Application to spin-torque nano-oscillators
The lineshape in an auto-oscillator with a large nonlinear frequency shift in
the presence of thermal noise is calculated. Near the generation threshold,
this lineshape becomes strongly non-Lorentzian, broadened, and asymmetric. A
Lorentzian lineshape is recovered far below and far above threshold, which
suggests that lineshape distortions provide a signature of the generation
threshold. The theory developed adequately describes the observed behavior of a
strongly nonlinear spin-torque nano-oscillator.Comment: 4 pages, 3 figure
Auto-oscillation threshold, narrow spectral lines, and line jitter in spin-torque oscillators based on MgO magnetic tunnel junctions
We demonstrate spin torque induced auto-oscillation in MgO-based magnetic
tunnel junctions. At the generation threshold, we observe a strong line
narrowing down to 6 MHz at 300K and a dramatic increase in oscillator power,
yielding spectrally pure oscillations free of flicker noise. Setting the
synthetic antiferromagnet into autooscillation requires the same current
polarity as the one needed to switch the free layer magnetization. The induced
auto-oscillations are observed even at zero applied field, which is believed to
be the acoustic mode of the synthetic antiferromagnet. While the phase
coherence of the auto-oscillation is of the order of microseconds, the power
autocorrelation time is of the order of milliseconds and can be strongly
influenced by the free layer dynamics
Indirect Interaction of Magnetic Domain Walls
We calculate the electron-mediated exchange interaction between two domain
walls in magnetic wires. This corresponds to the equilibrium regime and,
therefore, the interaction can be additionally controlled by an electric
current. The exchange interaction is long ranged and oscillates as a function
of the distance between the walls. It also depends oscillatory on the
polarization angle of the walls, having the maximum value for collinear
polarization.Comment: 3 pages, 3 figure
Current-driven vortex oscillations in metallic nanocontacts
We present experimental evidence of sub-GHz spin-transfer oscillations in
metallic nano-contacts that are due to the translational motion of a magnetic
vortex. The vortex is shown to execute large-amplitude orbital motion outside
the contact region. Good agreement with analytical theory and micromagnetics
simulations is found.Comment: 4 pages, 3 figure
Quantized spin wave modes in magnetic tunnel junction nanopillars
We present an experimental and theoretical study of the magnetic field
dependence of the mode frequency of thermally excited spin waves in rectangular
shaped nanopillars of lateral sizes 60x100, 75x150, and 105x190 nm2, patterned
from MgO-based magnetic tunnel junctions. The spin wave frequencies were
measured using spectrally resolved electrical noise measurements. In all
spectra, several independent quantized spin wave modes have been observed and
could be identified as eigenexcitations of the free layer and of the synthetic
antiferromagnet of the junction. Using a theoretical approach based on the
diagonalization of the dynamical matrix of a system of three coupled, spatially
confined magnetic layers, we have modeled the spectra for the smallest pillar
and have extracted its material parameters. The magnetization and exchange
stiffness constant of the CoFeB free layer are thereby found to be
substantially reduced compared to the corresponding thin film values. Moreover,
we could infer that the pinning of the magnetization at the lateral boundaries
must be weak. Finally, the interlayer dipolar coupling between the free layer
and the synthetic antiferromagnet causes mode anticrossings with gap openings
up to 2 GHz. At low fields and in the larger pillars, there is clear evidence
for strong non-uniformities of the layer magnetizations. In particular, at zero
field the lowest mode is not the fundamental mode, but a mode most likely
localized near the layer edges.Comment: 16 pages, 4 figures, (re)submitted to PR
Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media
Combining He ion irradiation and thermal mobility below 600K, we both trigger
and control the transformation from chemical disorder to order in thin films of
an intermetallic ferromagnet (FePd). Kinetic Monte Carlo simulations show how
the initial directional short range order determines order propagation.
Magnetic ordering perpendicular to the film plane was achieved, promoting the
initially weak magnetic anisotropy to the highest values known for FePd films.
This post-growth treatment should find applications in ultrahigh density
magnetic recording.Comment: 7 pages, 3 Figure
Phase Coherent Precessional Magnetization Reversal in Micro-scopic Spin Valve Elements
We study the precessional switching of the magnetization in microscopic spin
valve cells induced by ultra short in-plane hard axis magnetic field pulses.
Stable and highly efficient switching is monitored following pulses as short as
140 ps with energies down to 15 pJ. Multiple application of identical pulses
reversibly toggles the cell's magnetization be-tween the two easy directions.
Variations of pulse duration and amplitude reveal alter-nating regimes of
switching and non-switching corresponding to transitions from in-phase to
out-of-phase excitations of the magnetic precession by the field pulse. In the
low field limit damping becomes predominant and a relaxational reversal is
found allowing switching by hard axis fields below the in-plane anisotropy
field threshold.Comment: 17 pages, 4 figure
Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars
We study the current and temperature dependences of the microwave voltage
emission of spin-valve nanopillars subjected to an in-plane magnetic field and
a perpendicular-to-plane current. Despite the complex multilayer geometry,
clear microwave emission is shown to be possible and spectral lines as narrow
as 3.8 MHz (at 150 K) are observed.Comment: To appear in Applied Physics Letter
- …
