10 research outputs found

    The Traffic-Alert and Collision Avoidance System (TCAS) in the glass cockpit

    Get PDF
    This volume contains the contributions of the participants in the NASA Ames Research Center workshop on the traffic-alert and collision avoidance system (TCAS) implementation for aircraft with cathode ray tube (CRT) or flat panel displays. To take advantage of the display capability of the advanced-technology aircraft, NASA sponsored this workshop with the intent of bringing together industry personnel, pilots, and researchers so that pertinent issues in the area could be identified. During the 2-day workshop participants addressed a number of issues including: What is the optimum format for TCAS advisories. Where and how should maneuver advisories be presented to the crew. Should the maneuver advisories be presented on the primary flight display. Is it appropriate to have the autopilot perform the avoidance maneuver. Where and how should traffic information be presented to the crew. Should traffic information be combined with weather and navigation information. How much traffic should be shown and what ranges should be used. Contained in the document are the concepts and suggestions produced by the workshop participants

    North-Up, Track-Up, and Camera-Up Navigation of Unmanned Aircraft Systems

    Get PDF
    To optimize UAV reconnaissance operations, direction of viewing and direction of travel must be allowed to diverge. Our challenge was to design a control and display strategy to allow the operator to easily look where they’re going, go where they’re looking, and look and go in different directions. Two methods of control were devised to align traveling forward, viewing forward and commanding forward. The operator can command the UAS to turn to camera or command the camera to point in line with the direction of travel (eyes forward). We have also introduced a new camera-up map orientation. The operator can easily cycle through North-up, track-up, and camera-up to provide the best link between the exo-centric and ego-centric frames of reference. Ego-centric and exo-centric perspectives allow the operator to combine or separate the vehicle’s movement and the camera’s view to optimize the search task while maintaining situation awareness of flight hazards

    Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    Get PDF
    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program

    Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    Get PDF
    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program

    Federal Aviation Administration Flight Deck Human Factors Research Program

    Get PDF
    The next generation air transportation system (NextGen) is a comprehensive suite of state-of-the-art technologies and procedures that improves national airspace system(NAS)capacity and efficiency, while maintaining world-class safety. In order to realize these improvements,the roles and the systems ofpilots and controllers are changing. Advanced technologies and new procedures make the information and the tasksmore complex. The Federal Aviation Administration’s (FAA) Flight Deck Human Factors Research Programexamines flightcrew interaction with current and future technology and pilotperformance of flight procedures. Human factors scientists across industry, government,and academia produce scientific and technical data-driven recommendationsto support the FAA’s development of regulatory standards, policies, and other guidance materialsfor aircraft manufacturers and operators’ procedures, training, and equipage.A sample of the program’sscope, methodology, findings, future needs, and challenges is describedbelow

    Early Warning: Development of Confidential Incident Reporting Systems

    No full text
    Accidents hardly ever happen without warning. The combination, or sequence, of failures and mistakes that cause an accident may indeed be unique but the individual failures and mistakes rarely are. In the USA in 1974 the crews on two different aircraft misunderstood the same aeronautical chart and descended towards their destination dangerously early towards a mountain. The first crew were in good weather conditions and could see the mountain and resolved their misinterpretation of the chart. The second crew six weeks later were not so lucky. In cloud they had no clues to point out their mistake nor the presence of the mountain. The resulting crash and the ensuing inquiry, which brought to light the previous incident, shocked the country but gave it the impetus to instigate a safety reporting system. This system eventually became the NASA's Aviation Safety Reporting System (ASRS). The programme collects incident reports from pilots, controllers, mechanics, cabin attendants and many others involved in aviation operations. By disseminating this safety information the ASRS has helped enormously to give US airlines and airspace the highest safety standards. Accident prevention is a goal sought by everyone in the aviation industry and establishing effective incident reporting programmes can go a long way toward achieving that goal. This article will describe the steps and issues required to establish an incident reporting system. The authors summarize the lessons learned from the ASRS, now in its twentieth year of operation and from the Confidential Human Factors Reporting (HER) Programme run by British Airways, an airline that is a recognized world leader in safety reporting and analysis. The differences between government and airline operation of confidential safety reporting systems will be addressed

    Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    Get PDF
    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program.RTOP 505-67-41Approved for public release; distribution is unlimited

    Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    Get PDF
    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program.RTOP 505-67-41Approved for public release; distribution is unlimited
    corecore