25 research outputs found

    Variations in visceral leishmaniasis burden, mortality and the pathway to care within Bihar, India

    Get PDF
    BACKGROUND: Visceral leishmaniasis (VL) has been targeted by the WHO for elimination as a public health problem (< 1 case/10,000 people/year) in the Indian sub-continent (ISC) by 2020. Bihar State in India, which accounts for the majority of cases in the ISC, remains a major target for this elimination effort. However, there is considerable spatial, temporal and sub-population variation in occurrence of the disease and the pathway to care, which is largely unexplored and a threat to achieving the target. METHODS: Data from 6081 suspected VL patients who reported being clinically diagnosed during 2012-2013 across eight districts in Bihar were analysed. Graphical comparisons and Chi-square tests were used to determine differences in the burden of identified cases by season, district, age and sex. Log-linear regression models were fitted to onset (of symptoms)-to-diagnosis and onset-to-treatment waiting times to estimate their associations with age, sex, district and various socio-economic factors (SEFs). Logistic regression models were used to identify factors associated with mortality. RESULTS: Comparisons of VL caseloads suggested an annual cycle peaking in January-March. A 17-fold variation in the burden of identified cases across districts and under-representation of young children (0-5 years) relative to age-specific populations in Bihar were observed. Women accounted for a significantly lower proportion of the reported cases than men (41 vs 59%, P < 0.0001). Age, district of residence, house wall materials, caste, treatment cost, travelling for diagnosis and the number of treatments for symptoms before diagnosis were identified as correlates of waiting times. Mortality was associated with age, district of residence, onset-to-treatment waiting time, treatment duration, cattle ownership and cost of diagnosis. CONCLUSIONS: The distribution of VL in Bihar is highly heterogeneous, and reported caseloads and associated mortality vary significantly across different districts, posing different challenges to the elimination campaign. Socio-economic factors are important correlates of these differences, suggesting that elimination will require tailoring to population and sub-population circumstances

    Cluster randomised trial and development of a sandfly sex pheromone lure to reduce Leishmania infantum infection

    Get PDF
    Introduction: Vector control tools are needed to combat leishmaniasis. A semi-synthetic version of a Lutzomyia longipalpis aggregation/sex pheromone (9-methlygermacrene-B) has been developed, and shown efficacy to attract sandflies in the lab and to chicken sheds in the field. Here, we present results from a cluster-randomised trial performed in Brazil where we test the efficacy of the pheromone deployed with insecticide, a novel lure-and-kill intervention, to reduce leishmaniasis transmission to the canine reservoir. Aim: Investigate the efficacy of sandfly sex pheromone baited + insecticide treated chicken roosts to reduce transmission of Leishmania infantum among the reservoir population (dogs). Methods: We conducted a cluster-randomised trial across 42 communities in Brazil. Pheromone lures plus insecticide were applied in 14 communities, and outcomes compared to that of 28 other communities that received either a placebo (sham lure + insecticide) or deltamethrin-impregnated collars fitted to dogs. We quantify the primary intervention effects by comparison of the number of uninfected dogs that seroconverted in each arm over the course of the 2-year trial. Results: A reduction in canine incidence is attributed to the pheromone + insecticide intervention, which is consistent across the levels of hierarchical analysis, though the errors are broad. The performance of the pheromone followed similar patterns as the collar arm which significantly reduced seroconversion incidence. Conclusion: These data represent the first trial of a synthetic vector pheromone applied in public health control, and the first cluster-randomised trial of dog collars in Brazil. Both methods show potential for the control of zoonotic visceral leishmaniasis in the Americas; developments of the pheromone lure-and-kill strategy are underway

    Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases

    Get PDF
    Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination ‘as a public health problem’ when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models’ predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020

    The spatiotemporal tau statistic: a review

    Get PDF
    Introduction The tau statistic is a recent second-order correlation function that can assess the magnitude and range of global spatiotemporal clustering from epidemiological data containing geolocations of individual cases and, usually, disease onset times. This is the first review of its use, and the aspects of its computation and presentation that could affect inferences drawn and bias estimates of the statistic. Methods Using Google Scholar we searched papers or preprints that cited the papers that first defined/reformed the statistic. We tabulated their key characteristics to understand the statistic's development since 2012. Results Only half of the 16 studies found were considered to be using true tau statistics, but their inclusion in the review still provided important insights into their analysis motivations. All papers that used graphical hypothesis testing and parameter estimation used incorrect methods. There is a lack of clarity over how to choose the time-relatedness interval to relate cases and the distance band set, that are both required to calculate the statistic. Some studies demonstrated nuanced applications of the tau statistic in settings with unusual data or time relation variables, which enriched understanding of its possibilities. A gap was noticed in the estimators available to account for variable person-time at risk. Discussion Our review comprehensively covers current uses of the tau statistic for descriptive analysis, graphical hypothesis testing, and parameter estimation of spatiotemporal clustering. We also define a new estimator of the tau statistic for disease rates. For the tau statistic there are still open questions on its implementation which we hope this review inspires others to research

    Developments in statistical inference when assessing spatiotemporal disease clustering with the tau statistic

    Get PDF
    The tau statistic uses geolocation and, usually, symptom onset time to assess global spatiotemporal clustering from epidemiological data. We test different methods that could bias the clustering range estimate based on the statistic or affect its apparent precision, by comparison with a baseline analysis of an open access measles dataset. From re-analysing this data we find evidence against no clustering and no inhibition, (global envelope test). We develop a tau-specific modification of the Loh & Stein spatial bootstrap sampling method, which gives bootstrap tau estimates with 24% lower sampling error and a 110% higher estimated clustering endpoint than previously published (61â‹…0 m vs. 29 m) and an equivalent increase in the clustering area of elevated disease odds by 342%. These differences could have important consequences for control efforts. Correct practice of graphical hypothesis testing of no clustering and clustering range estimation of the tau statistic are illustrated in the online Graphical abstract. We advocate proper implementation of this useful statistic, ultimately to reduce inaccuracies in control policy decisions made during disease clustering analysis

    Impact of intensified control on visceral leishmaniasis in a highly-endemic district of Bihar, India: an interrupted time series analysis

    No full text
    Visceral leishmaniasis (VL) is declining in India and the World Health Organization's (WHO) 2020 'elimination as a public health problem' target has nearly been achieved. Intensified combined interventions might help reach elimination, but their impact has not been assessed. WHO's Neglected Tropical Diseases 2021&#x2013;2030 roadmap provides an opportunity to revisit VL control strategies. We estimated the combined effect of a district-wide pilot of intensified interventions in the highly-endemic Vaishali district, where cases fell from 3,598 in 2012&#x2013;2014 to 762 in 2015&#x2013;2017. The intensified control approach comprised indoor residual spraying with improved supervision; VL-specific training for accredited social health activists to reduce onset-to-diagnosis time; and increased Information Education &amp; Communication activities in the community. We compared the rate of incidence decrease in Vaishali to other districts in Bihar state via an interrupted time series analysis with a spatiotemporal model informed by previous VL epidemiological estimates. Changes in Vaishali's rank among Bihar's endemic districts in terms of monthly incidence showed a change pre-pilot (3rd highest out of 33 reporting districts) vs. during the pilot (9th) (p&lt;1e-10). The rate of decline in Vaishali's incidence saw no change in rank at 11th highest, both pre-pilot &amp; during the pilot. Counterfactual model simulations suggest an estimated median of 354 cases (IQR 234&#x2013;479) were averted by the Vaishali pilot between January 2015 and December 2017. Strengthening control strategies may have precipitated a substantial change in VL incidence in Vaishali and suggests this approach should be piloted in other highly-endemic districts

    Quantifying the Infectiousness of Post-Kala-Azar Dermal Leishmaniasis Toward Sand Flies.

    No full text
    Background On the Indian subcontinent, visceral leishmaniasis (VL) incidence is on track to reach elimination goals by 2020 in nearly all endemic districts. Although not included in official targets, previous data suggest post-kala-azar dermal leishmaniasis (PKDL) patients can act as an infection reservoir. Methods We conducted xenodiagnosis on 47 PKDL patients and 15 VL patients using laboratory-reared Phlebotomus argentipes. In direct xenodiagnosis, flies were allowed to feed on the patient’s skin for 15 minutes. For indirect xenodiagnosis, flies were fed through a membrane on the patient’s blood. Five days later, blood-fed flies were dissected and examined by microscopy and/or polymerase chain reaction (PCR). A 3-mm skin snip biopsy (PKDL) or venous blood (VL) was processed by quantitative PCR. Results Twenty-seven PKDL patients (57.4%) had positive results by direct and/or indirect xenodiagnosis. Direct was significantly more sensitive than indirect xenodiagnosis (55.3% vs 6.4%, P 1 log10 unit higher than those with negative results (2.88 vs 1.66, P < .0001). In a multivariable model, parasite load, nodular lesions, and positive skin microscopy were significantly associated with positive xenodiagnosis. Blood parasite load was the strongest predictor for VL. Compared to VL, nodular PKDL was more likely and macular PKDL less likely to result in positive xenodiagnosis, but neither difference reached statistical significance. Conclusions Nodular and macular PKDL, and VL, can be infectious to sand flies. Active PKDL case detection and prompt treatment should be instituted and maintained as an integral part of VL control and elimination programs
    corecore