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a b s t r a c t

The tau statistic τ uses geolocation and, usually, symptom onset
time to assess global spatiotemporal clustering from epidemi-
ological data. We test different methods that could bias the
clustering range estimate based on the statistic or affect its
apparent precision, by comparison with a baseline analysis of an
open access measles dataset.

From re-analysing this data we find evidence against no clus-
tering and no inhibition, p-value ∈ [0, 0·022] (global envelope
test). We develop a tau-specific modification of the Loh & Stein
spatial bootstrap sampling method, which gives bootstrap tau
estimates with 24% lower sampling error and a 110% higher
estimated clustering endpoint than previously published (61·0
m vs. 29 m) and an equivalent increase in the clustering area
of elevated disease odds by 342%. These differences could have
important consequences for control efforts.

Correct practice of graphical hypothesis testing of no cluster-
ing and clustering range estimation of the tau statistic are illus-
trated in the online Graphical abstract. We advocate proper im-
plementation of this useful statistic, ultimately to reduce inaccu-
racies in control policy decisions made during disease clustering
analysis.
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1. Introduction

Assessing if spatiotemporal clustering is present and measuring its magnitude and range is
nformative for epidemiologists working to control infectious diseases. The tau statistic (Section 2)
s more appropriate than most statistics for this task as it measures spatiotemporal rather than just
patial clustering, produces non-parametric estimates (without process assumptions) and, unlike
he K function (Gabriel and Diggle, 2009), offers a relative magnitude in the difference of risk, rate
r odds of disease versus the background level (Section 2.1) (Lessler et al., 2016; Pollington et al.,
019a). The tau statistic herein should not be confused with ‘Kendall’s tau statistic/rank correlation
oefficient’ (Bland, 2000). This study is motivated by a review of its use that found that its current
mplementation inflates type I errors (incorrectly rejecting a true null hypothesis) when testing for
o clustering and no inhibition, and may bias estimates of the range of clustering (Pollington et al.,
019a).
We investigate these aspects by analysing a well-studied open access measles dataset containing

ousehold geolocations and symptom onset times of cases (Section 3.1). It represents a spatially
iscrete process since infection is only recorded and can only occur at discrete household locations,
o the (statistical) support is not spatially continuous (Diggle et al., 2010).
We adopt an ordered approach: we first test for no clustering and no inhibition (Section 3.3)

nd then, conditional on finding evidence against this null hypothesis, we estimate the clustering
ndpoint and its first sampling error estimate (Section 3.4; online Graphical abstract). This approach
s contrary to the current methods applied to the tau statistic and similar statistics (Pollington et al.,
019a), which incorrectly combine graphical hypothesis testing for no clustering and estimation
f the clustering range (Section 3.2). We hope these improved methods will encourage proper
pplication of this burgeoning statistic.

. The tau statistic

The tau statistic τ is a non-parametric global clustering statistic which takes a disease frequency
easure (risk, odds or rate) within a certain annulus around a case and compares it to the
ackground measure (at any distance) and averaged over all cases (Salje et al., 2012; Lessler et al.,
016; Pollington et al., 2019a). It measures the tendency of case pairs to spatially cluster while
mplicitly accounting for how related they are in terms of transmission using temporal information,
aking it a spatiotemporal statistic.

.1. Tau statistic (odds ratio estimator)

We describe the most common tau estimator τ̂odds, which is based on the relative odds of
isease (Lessler et al., 2016), rather than other forms of the statistic (including a new rate ratio
stimator), which are described in a detailed review (Pollington et al., 2019a) from which this
ubsection draws heavily.
The distance form of the tau statistic τodds is the ratio of (i) the odds θ (dl, dm) of finding any case

that is ‘related’ to any case i, within a half-closed annulus [dl, dm), (l,m ∈ Z+, m = l + 1), around
case i, to (ii) the odds θ (0, ∞) of finding any case j related to any case i at any distance separation
(dij ≥ 0) for n total cases (Eq. (1) & Fig. 1).

τ̂odds(dl, dm) :=
θ̂ (dl, dm)

θ̂ (0, ∞)

where θ̂ (dl, dm) =

∑n
i=1

∑n
j=1,j̸=i 1(zij = 1, dl ≤ dij < dm)∑n ∑n

(1)
i=1 j=1,j̸=i 1(zij = 0, dl ≤ dij < dm)
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Fig. 1. A single distance band [dl, dm), the primary argument of the distance form of a tau estimator function: a half-closed
annulus of radii dl, dm with a case j inside, around case i, separated by distance dij .

The odds estimate θ̂ in Eq. (1) is the ratio of the number of related case pairs (zij = 1) within
[dl, dm), versus the number of unrelated case pairs (zij = 0) within [dl, dm). The main computation
is effectively a double sum over ‘relatedness’ indicator functions 1(·) for case pairs.

τ̂ (dl, dm) is then evaluated over B total distance bands to give a distance band set ∆ :=

{[dl, dm), l,m ∈ Z+,m = l + 1, l ≤ B}. Tau values signify either the presence of spatiotemporal
clustering (τ > 1), no clustering and no inhibition (τ = 1) or inhibition (τ < 1). Sometimes an
expanding disc is described by setting dl = 0 and relabelling dm = d to give τ̂ (d) instead. Although
τ̂ is strictly evaluated for a given distance band [dl, dm), when a τ -distance graph is drawn a value
of τ̂ (d) can be obtained through linearly interpolating between the distance band endpoints. The
half-closed annulus is a correction to the original open interval (Lessler et al. (2016): appendix 5);
it was incorporated in December 2018 into the IDSpatialStats R package (which calculates the
tau statistic) (Giles et al., 2018, 2019).

The relatedness of a case pair zij is commonly determined using temporal information (e.g.
difference in onset times of cases i and j, i.e. tj − ti) (Pollington et al., 2019a). The serial interval
is the period between the onset times of symptoms in the infector ti and their infectee tj. Typically
cases are defined as being temporally related when their onset times are within a single mean serial
interval of each other.

∗ τ ∗

In the following sections (Sections 3–4) we provide a descriptive analysis of the data, before
systematically testing several aspects of the tau statistic’s implementation and their impact on the
estimated clustering range and its sampling error.

3. Methods

3.1. The dataset and baseline analysis

We analyse an infectious disease dataset of measles from case households in Hagelloch, Germany
in 1861 (Pfeilsticker, 1863; Oesterle, 1992; Neal and Roberts, 2004; Höhle et al., 2019). Compu-
tations were coded in R (R Core Team, 2019) with further detail in the Supplementary material.
We have reproduced Lessler et al.’s (unpublished) analysis as a baseline result (Fig. 3); using their
interpretation of Fig. 3, spatiotemporal clustering is reported up to ∼ 30 m (Lessler et al., 2016). As
τ is a global statistic, ideally we would explore a distance band set covering the majority of pairwise
distances (∼ 200 m). However here we restrict the plots to 120 m for diagnostic (Fig. 3) or point

estimation (Figs. 5, 6, 8 & B.3) purposes, to be consistent with the baseline analysis.
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3.2. Our approach to graphical hypothesis testing and point estimation

An envelope is loosely defined as a collection of connected-line (syn. piecewise linear) functions
in the Cartesian plane, with some bound applied above and below. Central/null envelopes describe
the line function, i.e. whether it originates from bootstrap simulations of a point estimate or time-
mark permuted null distribution (Section 3.3), respectively; whereas global envelope or pointwise
confidence interval (syn. confidence band) refer to the way line functions are bounded. A global
envelope is a confidence interval (CI) for a collection of line functions but does not represent a
single distance band of one tau point estimate τ̂ (dl, dm) (i.e. a pointwise CI), but rather the entire
distance band set ∆. At say a 95% significance level, in 95% of outcomes of constructing a global
nvelope, the random envelope would contain the true value of τ (dl, dm), ∀ [dl, dm) ∈ ∆ (Baddeley
t al., 2015).
Our graphical hypothesis test (Section 3.3) and point estimation methods (Section 3.4; online G

aphical abstract) offer corrections to the implementations of the tau statistic or similar statistics
sed in many papers reviewed in Pollington et al. (2019a), i.e. (Salje et al., 2012, 2016a,b, 2017,
018; Bhoomiboonchoo et al., 2014; Grabowski et al., 2014; Levy et al., 2015; Grantz et al., 2016;
oang Quoc et al., 2016; Lessler et al., 2016; Azman et al., 2018; Rehman et al., 2018; Succo et al.,
018; Truelove et al., 2019). These studies incorrectly used an envelope about the point estimates
r simulated null distribution, constructed from pointwise CIs, as a graphical hypothesis test to
eject clustering which amounts to multiple hypothesis testing and inflated type I errors (Figs. 2a
b) (Pollington et al., 2019a). Additionally they defined the clustering endpoint D as the distance

t which the lower bound of the first pointwise (percentile) CI belonging to a point estimate above
= 1, touches τ = 1 (Fig. 2a), or where the point estimate line touches the upper bound of the
ull envelope formed from pointwise CIs (Fig. 2b); thus mixing graphical hypothesis testing with
oint estimation (Pollington et al., 2019a).

.3. Graphical hypothesis test of no clustering and no inhibition

We instead construct a global envelope around the distribution of the null hypothesis (H0: τ = 1,
o spatiotemporal clustering nor inhibition) (Myllymäki and Mrkvička, 2019a). This is generated
y randomly permuting the time marks (onset timei) of the spatiotemporal data points Xi =

(x-coordinatei, y-coordinatei, onset timei), i = {1, . . . , n} to scramble any spatiotemporal clustering
present and simulate what τ̂ would be under H0. We assess if a subset of distance bands δ of ∆

exists (as contiguous or disjoint regions) where the tau point estimate τ̂ (d) is ever above/below the
pper/lower bound, respectively, of this global null envelope. This global envelope is of extreme
ank type (‘‘defined as the minimum of pointwise ranks’’) with 95% significance level and extreme
ank length p-value interval (note: a range, not a single p-value) as constructed by the GET R
package (Myllymäki et al., 2019b) (see online Graphical abstract). We compute 2500 time-mark
permuted tau simulations for an optimal test (Myllymäki et al., 2017).

The test is two-tailed, which is necessary as only once the graph is plotted is the presence
of clustering or inhibition apparent (alternative hypothesis H1: τ ̸= 1). One should use a global
∆ covering all pairwise distances, but at large distances null simulations commonly diverge from

= 1. This however can be assessed by tracking the upper & lower quartiles of null simulations (see
ode in Supplementary material) and choosing a shorter maximum distance; here the maximum
airwise distance is 319 m and we choose 220 m.

.4. Point estimation of the clustering endpoint and its sampling error

If graphical hypothesis testing establishes evidence against no spatiotemporal clustering nor
nhibition within a subset of distance bands δ (Section 3.3) and visual graph inspection indicates
lustering, then it is acceptable to estimate the clustering endpoint D̂ for the clustering range [d1 =

0 (assumed), dm = D̂); this is where the point estimate line τ̂ (d) intercepts τ = 1, i.e. τ̂ (D̂) = 1. Due
to discrete distance bands we linearly interpolate between their endpoints, i.e. [dl, dm) with τ̂ > 1,
and [d , d ) with τ̂ < 1, to obtain D̂.
l+1 m+1
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Fig. 2. Previous naive methods: several authors (Section 3.2) choose one envelope type as ‘central’ (a) or ‘null’ (b), then
simultaneously test the hypothesis of no clustering and estimate the clustering endpoint parameter D̂ (Pollington et al.,
2019a). The single red line τ = 1 represents no spatiotemporal clustering nor inhibition. Grey lines indicate (a) a collection
of spatial bootstrap estimates τ̂ ∗ (denoted by ∗ , see Section 3.4.1) from a typical tau estimator characterised by negative
exponential lines with Normal noise, or (b) simulations of the tau estimator on time-mark permuted data for null envelope
construction, represented here as lines at τ = 1 with Normal noise; black lines mark out the envelope bounds constructed
from pointwise confidence intervals. The solid blue line characterises an empirical tau point estimate τ̂ (d).
Instead, we split the method into the separate steps of graphical hypothesis testing (Fig. 4) and point estimation (e.g. Fig. 5)
in Sections 3.3 & 3.4, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

To estimate the sampling error of D̂ we use spatial bootstrap (denoted by ∗, see Section 3.4.1)
tau estimates τ̂

∗. For every bootstrap simulation (that represents a connected line of simulated tau
estimates for increasing d, i.e. {τ̂ ∗(dl, dm) : [dl, dm) ∈ ∆}), we record those that originate from
bove τ = 1 and then intersect τ = 1 at some greater distance D within ∆, i.e. those that satisfy
τ̂ ∗(D) = 1 : D ∈ ∆}. We use N = 2500 samples which is more than sufficient for a typical
ootstrap (Efron and Tibshirani, 1998). We then take this horizontal set of values D and use it to

obtain a CI to describe the sampling error in D̂ (see online Graphical abstract).
We now investigate spatial bootstrap methods (Section 3.4.1), CI construction (Section 3.4.2) and

distance band sets (Section 3.4.3).

3.4.1. Spatial bootstrap sampling methods for τ̂

The method that generates spatial bootstrap tau estimates τ̂ ∗ may impact the sampling error
of the CI of the clustering endpoint D̂. Through bootstrap theory, the sampling distribution τ̂

∗ may
serve as a proxy for the actual distribution of τ̂ on the data. Furthermore the (central) envelopes
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Fig. 3. Baseline result: a reproduction of a previous analysis (Lessler et al., 2016, Fig. 4C); note their x-axis used the
midpoint of the distance band rather than the endpoint. The superimposition of their envelope and ours validates our
implementation of tau functions from their IDSpatialStats R package (Giles et al., 2018). According to Lessler et al.’s
convention, the end of the clustering range is where the lower bound of the envelope intersects τ = 1 (D̂base = 29 m).
We do not endorse this convention however, and take the point where the point estimate line τ̂ intersects (D̂ = 61 m).
Additionally we generally recommend the use of BCa pointwise CIs for diagnostic plots such as this.
Their 29 m value was previously reported as 15 m due to a misinterpretation in the midpoint distance graph reading, as
confirmed by Lessler (personal comm.)). Instead we use the endpoint so that a point (d, τ (d)) read off the graph pertains
to the single distance band [dm−1, dm = d), and more commonly [0, d) when dl = 0. Whereas the midpoint requires an
additional step by the reader that can easily introduce error.

constructed from τ̂
∗ may approximate the envelope of τ̂ on the data, and as a corollary the D

envelope formed by the intercept of τ̂
∗ with τ = 1 (Efron, 1979).

We compare three spatial bootstrap methods that define the bootstrap either on the data
beforehand (see Resampled-index spatial bootstrap (RISB)), or bootstrap the local τ functions (see
odified point spatial bootstrap (MPSB) in Appendix A.4) or locally-(un/)related mark functions
(see Modified marked point spatial bootstrap (MMPSB)). All are non-parametric because they

andomly resample the data, or local τ or m functions, without imposing a distribution (Loh, 2008).

esampled-index spatial bootstrap (RISB). We start again with spatiotemporal data set X = (Xi)i={1,...,n
where Xi = (x-coordinatei, y-coordinatei, onset timei). Using the Uniform distribution we resample
with replacement the data’s index vector i = (1, . . . , n) n times (equal to the number of cases), to
enerate a spatial bootstrap of the data, with sample index vector i∗ = (i∗1, . . . , i

∗
n) and subsequent

data set X∗
= (Xi∗); i and i∗ have the same length, but i∗ is bound to contain duplicated indices due

o sampling with replacement. To obtain N bootstrap τ estimates τ̂
∗

= (τ̂ ∗

1 , . . . , τ̂ ∗

N ) we apply the
tau odds estimator individually to N bootstrap data sets X∗

1 , . . . , X∗

N ; the same approach could be
applied to other τ estimators.

Loh critiques this ‘‘naive’’ sampling with replacement of the points Xi of a spatial dataset (Xi) to
produce a spatial bootstrap sample, because ‘‘the spatial dependence structure has to be preserved
as much as possible’’ (Loh, 2008) . . . ‘‘to reflect properties of the original process’’ (Loh and Stein,
2004). Lessler et al. (2016) and others used this method and additionally for any i∗, j∗ resampled
index pairs, dropped pairs (Xi∗ , Xj∗ ) for which Xi∗ = Xj∗ , as they represented the same point, to avoid
‘self comparisons’.
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Modified marked point spatial bootstrap (MMPSB). Like MPSB (discussed in Appendix A.4) we
bootstrap local functions not the data (RISB), but like all three methods still use i∗ to decide the
sample. Unlike MPSB rather than using local τ functions (Equation A.2), we go deeper and compute
the number of locally-related/unrelated cases from mark functions mi(k) local to case i, according
to their binary time-relatedness k.

The number of time-related cases (#related) out of all empirical cases j, within a distance [dl, dm)
around a case i∗ (chosen in the bootstrap sample) is:

#related(dl, dm, k = 1, i∗) ≡ mi∗ (dl, dm, k = 1) :=

∑
j∈j,j̸=i∗

1(dl ≤ di∗j < dm, zi∗j = 1) (2)

nd then an average is taken over the n cases in the bootstrap sample of indices i∗:

#related∗(dl, dm) ≡ m∗(k = 1) =
1
n

∑
i∗∈i∗

∑
j∈j,j̸=i∗

1(dl ≤ di∗j < dm, zi∗j = 1), (3)

nd similar steps for time-unrelated cases yield:

#unrelated∗(dl, dm) ≡ m∗(k = 0) =
1
n

∑
i∗∈i∗

∑
j∈j,j̸=i∗

1(dl ≤ di∗j < dm, zi∗j = 0), (4)

and finally the odds and odds ratio estimators can be calculated as before:

θ∗(dl, dm) =
#related∗(dl, dm)

#unrelated∗(dl, dm)
=

∑
i∗∈i∗

∑
j∈j,j̸=i∗ 1(dl ≤ di∗j < dm, zi∗j = 1)∑

i∗∈i∗
∑

j∈j,j̸=i∗ 1(dl ≤ di∗j < dm, zi∗j = 0)
(5)

τ ∗

MMPSB(dl, dm) =
θ∗(dl, dm)
θ∗(0, ∞)

(6)

.4.2. Confidence interval (CI) construction
Bias-corrected and accelerated (BCa) CIs can cope with asymmetrical distributions (like D defined

in Section 3.4) better than percentile CIs. For non-parametric problems Carpenter and Bithell
(2000) consistently found Efron’s BCa method best, due to its low theoretical coverage errors for
approximating the exact CI. BCa had ‘‘second-order correct coverage’’ errors under some assumptions,
while a percentile CI was first-order correct at best (Efron, 1987). The BCa algorithm transforms
a distribution of bootstrap calculations by normalisation to stabilise its variance so that a CI
can be constructed, then back-transforms it (Efron, 1987). We calculated it using the coxed R
package (Kropko and Harden, 2019).

3.4.3. Distance band sets
The tau statistic is non-unique as it depends on the distance band set chosen (Pollington et al.,

2019a), so the potential variation in τ estimates from this choice is of interest; we explore this
briefly in a non-systematic way. From analysing cases’ pairwise distances we propose a reasonable
distinct (non-overlapping) distance band set, i.e. ∆dis :=

{
[0,7), [7,15), [15,20), [20,25), [25,30), . . . ,

115,120 m)
}
as a comparison to the overlapping set in the baseline analysis ∆overlap :=

{
[0,10),

0,12), [0,14), . . . , [0,50), [2,52), [4,54), . . . , [70,120 m)
}
(Lessler et al., 2016), and test these using

= 2500 samples under MMPSB sampling.

. Results & discussion

.1. Dataset description

The epidemic over a small ∼280 x 240 m2 area lasted nearly three months and five distinct
enerations can be discerned from the epidemic curve (Fig. B.1). Out of the 197 under-14 year
lds, 185 became infected, along with three teenagers, leaving 377 remaining teenagers and adults
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Fig. 4. Graphical hypothesis testing: Global envelope test, ‘extreme rank’ type, two-sided at 95% significance level using
2500 simulations of the null hypothesis (H0: no spatiotemporal clustering nor inhibition, i.e. τ = 1), p-value ∈ [0, 0·022].
Note there is a region where τ̂ just exits the global envelope lower bound (suggesting inhibition at ∼100 m) as well as
the obvious departures above the upper bound (suggesting clustering at close distances and ∼190 m). We are confident
hat we are simulating H0 well because the median simulation stays close to τ = 1 throughout. Distance band set
=

{
[0, 10), [0, 12), [0, 14), . . . , [0, 50), [2, 52), [4, 54), . . . , [170, 220) m

}
.

ninfected (Neal and Roberts, 2004). Fig. B.2 indicates a weak signal of direct transmission between
ases, as cases with onsets close together in time (shown by similar colours) tended to be nearby
o each other.

.2. Graphical hypothesis test: global envelope vs. pointwise CIs

There is moderate evidence against the hypothesis of no spatiotemporal clustering nor inhibition
p-value ∈ [0, 0·022]) based on constructing the global envelope around τ = 1 under the null
ypothesis (Fig. 4), and thus we conclude that the data X is inconsistent with the null model (H0:
= 1). So we turn to the alternative hypothesis, that there is clustering and/or inhibition. Fig. 4

uggests clustering at short distances and ∼190 m, and inhibition at long distances. Unfortunately
t is not possible to compare our results with those of previous papers (see Section 3.2), since they
sed an incorrect pointwise CI approach to assess clustering, for which a p-value is not available.

.3. Impact on the estimated clustering endpoint

Given the evidence of no clustering with the clear clustering signal in Fig. 4 we continue
ith parameter calculation. We estimate the clustering endpoint as D̂ = 61·0 m with a 95%
ercentile CI of (29·0, 83·0 m) over 100 bootstrap simulations using RISB sampling (Fig. 5), or
29·2, 83·5 m) over 2500 simulations (using 100% of simulations, see Appendix A.2); more bootstrap
imulations do not appear to affect the sampling error.
The clustering identified at ∼190 m (Fig. 4) is ignored as we are interested in the first clustering

ange for baseline comparison; in general this may provide useful information of medium-range
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o

Fig. 5. Point estimation: Effect of number of samples on D̂ sampling error, when using RISB sampling. Both CIs used 100%
f simulations. D̂ = 61·0 m; N = 100: 95% percentile CI (29·0, 83·0 m); N = 2500: CI (29·2, 83·5 m). Distance band set

as Fig. 4.

Fig. 6. Point estimation: Effect of spatial bootstrap sampling method on D̂ sampling error. RISB 95% BCa CI (29·3, 84·4
m); MMPSB CI (29·8, 71·8 m); both CIs used 100% of simulations. Distance band set as Fig. 4, D̂ = 61·0 m; N = 2500.
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Fig. 7. Point estimation: The distribution of D, formed by the sampled values of D̂i , i.e. D = {D̂i : τ̂ ∗(D̂i) = 1, i = 1, . . . ,N}

illustrated in online Graphical abstract), by number of bootstrap samples N = 100 (top row) or N = 2500 (bottom)
nd by spatial bootstrap sampling method RISB (left column) or MMPSB (right). Vertical dotted lines indicate the point
stimate D̂ = 61·0 m (red); with the mean (green) and median (blue) of the sampled estimates D̂i , obtained from where
he bootstrap tau estimates τ̂

∗ intercept τ = 1. RISB and MMPSB (N = 100) have positive skew as the mean estimate is
reater than the median estimate, whereas for MMPSB (N = 2500) it has a negative skew. All bootstrap estimations have
negative bias with respect to mean or median summary measures versus the point estimate D̂. At N = 2500 this is
10 m for RISB and ∼5 m for MMPSB. The data points used to construct the 95% BCa CIs (purple line on horizontal axis)

rom the D̂i estimates in (a) are copied from Fig. 5 (N = 100 simulations) while those for (c) & (d) are from Fig. 6, while
b) has been freshly calculated. All four CIs used 100% of simulations. Distance band set as Fig. 4. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)

patial structure to understand disease spread, but secondary to control policy around an index
ase household.
The point estimate D̂ = 61·0 m is 110% higher than the baseline clustering endpoint (D̂base = 29

m) (Fig. 3). Previous estimates derived via the improper method of finding the distance at which
the lower bound of the central envelope (around τ̂ ) touches τ = 1, have probably substantially
underestimated this range. The plateauing shape of τ̂ (d) before it reaches τ = 1 contributes to the
increased imprecision in the estimate of D̂. This highlights the utility of visually assessing the graph
rather than rigidly using a τ = 1 threshold, as it is likely that disease control over say a 60 m radius
around an average case would see the biggest gains over the first 30 m with diminishing returns
at wider radii (Fig. 6).
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τ

Fig. 8. Point estimation: Effect of distance band set on D̂ sampling error using MMPSB sampling. Overlapping set
∆overlap :=

{
[0, 10), [0, 12), [0, 14), . . . , [0, 50), [2, 52), [4, 54), . . . , [70, 120) m

}
(Lessler et al., 2016) and distinct ∆dis :={

[0, 7), [7, 15), [15, 20), [20, 25), [25, 30), . . . , [115, 120) m
}
. ∆dis yields lower D̂ = 18·9 m and more erratic point estimate

ˆ yet tighter 95% BCa CI for D̂ (18·4, 28·6 m) versus ∆overlap with D̂ = 61·0 m and CI (29·8, 71·8 m) however on further
investigation the distribution D for the ∆dis is heavily bimodal; both CIs used 100% of simulations.

The 110% increase in the radial parameter D̂ due to the corrected estimation method (Section 3.4)
is further compounded for public health interventions, as their time and cost are more closely
proportional to area not radius, and the areal increase is 342% (since π (D̂2

− D̂2
base)/π D̂2

base = 3·42,
assuming dl = 0).

4.4. Spatial bootstrap impact on sampling error: modified marked point vs. resampled-index

Using the modified marked point spatial bootstrap (MMPSB) (Section 3.4.1) yields a 24% nar-
rower envelope than the resampled-index spatial bootstrap (RISB), leading to a 95% BCa CI for D̂ of
(29·8, 71·8 m) (Fig. 6); both CIs used 100% of simulations.

If through simpler spatiotemporal structures or more evenly spread households the tau point
estimate τ̂ had been smoother in approach to the τ = 1 intercept, then the range of clustering
would be far larger and the benefit of this estimation method (Section 3.4) more apparent. Given
the reasons why MMPSB is better (Section 3.4.1), we believe RISB will poorly sample D̂ and unfairly
represent its precision.

MMPSB outperforms RISB because the latter loses more pair information from resampling indices
and avoiding self-comparisons. This was checked empirically for the measles data: the tau point
estimate is computed on 188 x 187 = 35156 pairs. In comparison, on average from 1000 simulations,
RISB samples from 119 unique people, leading to 119 x 118 = 14042 unique pairs evaluated or
∼ 39·9% of the original pairs. Of course many additional duplicate pairs are used in RISB but we
are only interested in unique pair information that is retained. MMPSB only has 119 unique mark
functions, but each of them is compared with the other 187 cases, leading to 63·3% of pairs being

retained.
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4.5. CI type: BCa vs. percentile

Histograms of D = {D̂i : τ̂ ∗(D̂i) = 1, i = 1, . . . ,N} by number of bootstrap samples and
ampling method strongly indicate asymmetric distributions, which support the principled use of
Ca (Figs. 7a-d). Furthermore Figs. 7b & d show how MMPSB tau estimates τ̂

∗ intercept at values
f d closer to D̂ than RISB. Despite this, percentile (29·2, 83·5 m) and BCa (29·3, 84·4 m) CIs, using
ISB and N = 2500, differ marginally (Figs. 5 & 6). RISB appears to introduce a slight positive skew
mean > median) in D whereas MMPSB with sufficient samples (N = 2500) has a negative skew
Figs. 7a-d). At N = 2500, MMPSB noticeably reduces the bias (D̄ − D̂), between mean/median
estimates of D and the point estimate D̂ from ∼10 m to ∼5 m, or ∼8% of D̂.

.6. Distance bands: overlapping vs. distinct

Overlapping distance band sets ∆overlap appear to produce D̂ estimates with higher variance (95%
BCa CI (29·8, 71·8 m)) than distinct ∆dis (CI (18·4, 28·6 m)) (Fig. 8), but a clearer and smoother trend
n tau with increasing distance (both CIs used 100% of simulations). The distribution of D is strongly
bi-modal for ∆dis because the simulations are more erratic about τ = 1. The increased volatility of τ̂
lso results in multiple intercepts with τ = 1, but for usability we prefer a single range of clustering,
iven in this case by ∆overlap.

5. Conclusion and recommendations for improved use

We have shown that the way the endpoint of the clustering range D̂ is currently calculated using
the tau statistic can lead to biased estimates. Using a redefined D for the Hagelloch measles dataset,
esulted in bias reductions equivalent to increasing the clustering area of elevated odds by 342%.
n improved spatial bootstrap sampling method delivered D̂ estimates with 24% lower sampling
rror. These improvements will appear in future versions of the IDSpatialStats R package (Giles

et al., 2018). Our results (Section 4) support the following recommendations:

• using the point d where the tau point estimate line τ̂ (d) intercepts τ = 1 to define the
clustering endpoint estimate D̂ avoids underestimating it like earlier papers. However this
estimation should be conditional on graphical hypothesis testing and visual plot inspection.

• the modified marked point spatial bootstrap should be used to simulate τ̂ instead of the
resampled-index method, for CIs that better represent the precision of the clustering endpoint
D̂.

• BCa, rather than percentile, CIs should be used as they give better coverage since the dis-
tribution of bootstrap tau simulations τ̂

∗ or clustering endpoint estimates D is commonly
asymmetric.

Tau statistic limitations. The distance band set choice [dl, dm) ∈ ∆ clearly biases D̂ and affects its
smoothness and sampling error. A better understanding of how to choose distance bands for a given
purpose is now needed. It is also unknown how the time-relatedness interval choice [T1, T2] (where
ij = 1

(
(tj − ti) ∈ [T1, T2]

)
) biases the tau statistic through inclusion of extraneous co-primary

or secondary cases. It is unclear how second-order correlation functions like the tau statistic and
Ripley’s K function (Gabriel and Diggle, 2009), originally founded in spatiotemporal point processes
with continuous support in R2, behave for this spatially discrete process. Finally the number of
bootstrap samples required for graphical hypothesis testing and estimation purposes is unknown;
we believe that related research by Davidson and MacKinnon (2000) could inform a heuristic
algorithm.

∗ τ ∗

e encourage the adoption of the statistical protocol described (see online Graphical abstract) to
roperly test for clustering, and, if appropriate, estimate its range. Control programmes have already
een informed by the tau statistic and applying these bias-reduction methods will improve its
ccuracy in future health policy decisions. In addition to modellers or epidemiologists working on
eal-time outbreaks or post-study analysis, we hope statisticians are inspired to apply this statistic

o spatiotemporal branching processes in new fields.
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Figure summary

The figures above illustrate the spatial coverage of the statistic (Fig. 1), show previous methods
and the baseline analysis (Figs. 2a-b & 3), perform a graphical hypothesis test (Fig. 4), or investigate
effects on the parameter point estimate D̂ and distribution D (unless stated the distance band set
s ‘overlapping’, see Fig. 4 caption):

• number of samples N = 100 or 2500, on RISB sampling using percentile CIs (Fig. 5)
• RISB vs. MMPSB, or MMPSB vs. MPSB sampling (Figs. 6 & B.3, respectively) (using N = 2500

and BCa CIs)
• RISB vs. MMPSB sampling and N = 100 or 2500 (with BCa CIs) (Figs. 7a-d)
• overlapping vs. distinct distance band sets (using N = 2500, MMPSB sampling and BCa CIs)

(Fig. 8)

upplementary material

Online supplementary material (https://doi.org/10.1016/j.spasta.2020.100438) contains Appen-
ices A.1-5, detailing the computation methods and two of the spatial bootstrap sampling methods,
hile Appendix B contains Figs. B.1-3 that were not central to the manuscript. The analysis code

n R Markdown is available from https://github.com/t-pollington/developments_tau_statistic under

GNU General Public License v3.0 licence.
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