22,186 research outputs found

    Mathematical models of avascular cancer

    Get PDF
    This review will outline a number of illustrative mathematical models describing the growth of avascular tumours. The aim of the review is to provide a relatively comprehensive list of existing models in this area and discuss several representative models in greater detail. In the latter part of the review, some possible future avenues of mathematical modelling of avascular tumour development are outlined together with a list of key questions

    Mathematical models of avascular cancer

    Get PDF
    This review will outline a number of illustrative mathematical models describing the growth of avascular tumours. The aim of the review is to provide a relatively comprehensive list of existing models in this area and discuss several representative models in greater detail. In the latter part of the review, some possible future avenues of mathematical modelling of avascular tumour development are outlined together with a list of key questions

    Comparison of toughened composite laminates using NASA standard damage tolerance tests

    Get PDF
    The proposed application of composite materials to transport wing and fuselage structures prompted the search for tougher materials having improved resistance to impact damage and delamination. Several resin/graphite fiber composite materials were subjected to standard damage tolerance tests and the results were compared to ascertain which materials have superior toughness. In addition, test results from various company and NASA laboratories were compared for repeatability

    Analytical and experimental investigations of low level acceleration measurement techniques

    Get PDF
    Construction techniques for accelerometer with low level threshold sensitivit

    Observations of cosmic ray induced phosphenes

    Get PDF
    Phosphene observations by astronauts on flights near and far from earth atmosphere are discussed. It was concluded that phosphenes could be observed by the naked eye. Further investigation is proposed to determine realistic human tolerance levels for extended missions and to evaluate the need to provide special spacecraft shielding

    Multi-Spacecraft Measurement of Turbulence within a Magnetic Reconnection Jet

    Get PDF
    The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in-situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work done by electromagnetic fields on the particles, JE\mathbf{J}\cdot\mathbf{E}, has a non-Gaussian distribution and is concentrated in regions of high electric current density. Hence, magnetic energy is converted to kinetic energy in an intermittent manner. Furthermore, we find the higher-order statistics of magnetic field fluctuations generated by reconnection are characterized by multifractal scaling on magnetofluid scales and non-Gaussian global scale invariance on kinetic scales. These observations suggest JE\mathbf{J}\cdot\mathbf{E} within the reconnection jet has an analogue in fluid-like turbulence theory in that it proceeds via coherent structures generated by an intermittent cascade. This supports the hypothesis that turbulent dissipation is highly nonuniform, and thus these results could have far reaching implications for space and astrophysical plasmas.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity

    Get PDF
    The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and κ\kappa, the Ginzburg--Landau parameter. The secondary bifurcation in which the asymmetric solution branches reconnect with the symmetric solution branch is studied for values of (κ,d)(\kappa,d) for which it is close to the primary bifurcation from the normal state. These values of (κ,d)(\kappa,d) form a curve in the κd\kappa d-plane, which is determined. At one point on this curve, called the quintuple point, the primary bifurcations switch from being subcritical to supercritical, requiring a separate analysis. The results answer some of the conjectures of [A. Aftalion and W. C. Troy, Phys. D, 132 (1999), pp. 214--232]

    Magnetic Reconnection and Intermittent Turbulence in the Solar Wind

    Get PDF
    A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, B\mathbf{B}, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in B\mathbf{B}, we find 87%-92% of reconnection exhausts and \sim9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
    corecore