1,525 research outputs found

    Recent Developments in Yugoslav Archaeology

    Get PDF
    Classical and Mediterranean Archaeolog

    Obesity, oxidative DNA damage and vitamin D as predictors of genomic instability in children and adolescents

    Get PDF
    Background/objectives Epidemiological evidence indicates obesity in childhood and adolescence to be an independent risk factor for cancer and premature mortality in adulthood. Pathological implications from excess adiposity may begin early in life. Obesity is concurrent with a state of chronic inflammation, a well-known aetiological factor for DNA damage. In addition, obesity has been associated with micro-nutritional deficiencies. Vitamin D has attracted attention for its anti-inflammatory properties and role in genomic integrity and stability. The aim of this study was to determine a novel approach for predicting genomic instability via the combined assessment of adiposity, DNA damage, systemic inflammation, and vitamin D status. Subjects/methods We carried out a cross-sectional study with 132 participants, aged 10–18, recruited from schools and paediatric obesity clinics in London. Anthropometric assessments included BMI Z-score, waist and hip circumference, and body fat percentage via bioelectrical impedance. Inflammation and vitamin D levels in saliva were assessed by enzyme-linked immunosorbent assay. Oxidative DNA damage was determined via quantification of 8-hydroxy-2′-deoxyguanosine in urine. Exfoliated cells from the oral cavity were scored for genomic instability via the buccal cytome assay. Results As expected, comparisons between participants with obesity and normal range BMI showed significant differences in anthropometric measures (p < 0.001). Significant differences were also observed in some measures of genomic instability (p < 0.001). When examining relationships between variables for all participants, markers of adiposity positively correlated with acquired oxidative DNA damage (p < 0.01) and genomic instability (p < 0.001), and negatively correlated with vitamin D (p < 0.01). Multiple regression analyses identified obesity (p < 0.001), vitamin D (p < 0.001), and oxidative DNA damage (p < 0.05) as the three significant predictors of genomic instability. Conclusions Obesity, oxidative DNA damage, and vitamin D deficiency are significant predictors of genomic instability. Non-invasive biomonitoring and predictive modelling of genomic instability in young patients with obesity may contribute to the prioritisation and severity of clinical intervention measures

    Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages

    Get PDF
    AbstractLipoprotein lipase (LPL) acts independently of its function as triglyceride hydrolase by stimulating macrophage binding and uptake of native, oxidized and glycated LDL. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in monocyte/macrophages, where they control cholesterol homeostasis. Here we study the role of PPARs in the regulation of LPL expression and activity in human monocytes and macrophages. Incubation of human monocytes or macrophages with PPARα or PPARγ ligands increases LPL mRNA and intracellular protein levels. By contrast, PPAR activators decrease secreted LPL mass and enzyme activity in differentiated macrophages. These actions of PPAR activators are associated with a reduced uptake of glycated LDL and could influence atherosclerosis development associated with diabetes

    One-Loop QCD Corrections to the Thermal Wilson Line Model

    Get PDF
    We calculate the time independent four-point function in high temperature (T) QCD and obtain the leading momentum dependent terms. Furthermore, we relate these derivative interactions to derivative terms in a recently proposed finite T effective action based on the SU(3) Wilson Line and its trace, the Polyakov Loop. By this procedure we thus obtain a perturbative matching at finite T between QCD and the effective model. In particular, we calculate the leading perturbative QCD-correction to the kinetic term for the Polyakov Loop.Comment: Minor changes, one reference adde

    Parametric Polyhedra with at least kk Lattice Points: Their Semigroup Structure and the k-Frobenius Problem

    Full text link
    Given an integral d×nd \times n matrix AA, the well-studied affine semigroup \mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be stratified by the number of lattice points inside the parametric polyhedra PA(b)={x:Ax=b,x0}P_A(b)=\{x: Ax=b, x\geq0\}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{ Sg}(A) such that PA(b)ZnP_A(b) \cap {\mathbb Z}^n has at least kk solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors bb for which PA(b)ZnP_A(b) \cap {\mathbb Z}^n has exactly kk solutions or fewer than kk solutions. (2) A computational complexity theory. We show that, when nn, kk are fixed natural numbers, one can compute in polynomial time an encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least kk solutions. (3) Applications and computation for the kk-Frobenius numbers. Using Generating functions we prove that for fixed n,kn,k the kk-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k=1k=1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of kk-Frobenius numbers and their relatives

    Dragon-kings: mechanisms, statistical methods and empirical evidence

    Full text link
    This introductory article presents the special Discussion and Debate volume "From black swans to dragon-kings, is there life beyond power laws?" published in Eur. Phys. J. Special Topics in May 2012. We summarize and put in perspective the contributions into three main themes: (i) mechanisms for dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii) empirical evidence in a large variety of natural and social systems. Overall, we are pleased to witness significant advances both in the introduction and clarification of underlying mechanisms and in the development of novel efficient tests that demonstrate clear evidence for the presence of dragon-kings in many systems. However, this positive view should be balanced by the fact that this remains a very delicate and difficult field, if only due to the scarcity of data as well as the extraordinary important implications with respect to hazard assessment, risk control and predictability.Comment: 20 page
    corecore