International Journal of Obesity (2021) 45:2095-2107
https://doi.org/10.1038/541366-021-00879-2

ARTICLE
Pediatrics prisee

Obesity, oxidative DNA damage and vitamin D as predictors of
genomic instability in children and adolescents

Moonisah Usman' - Maria Woloshynowych? - Jessica Carrilho Britto' - Ivona Bilkevic' - Bethany Glassar® -
Simon Chapman? - Martha E. Ford-Adams* - Ashish Desai(®’ - Murray Bain® - Ihab Tewfik' - Emanuela V. Volpi®'

Received: 6 January 2021 / Revised: 18 May 2021 / Accepted: 27 May 2021 / Published online: 22 June 2021
© The Author(s) 2021. This article is published with open access

Abstract

Background/objectives Epidemiological evidence indicates obesity in childhood and adolescence to be an independent risk
factor for cancer and premature mortality in adulthood. Pathological implications from excess adiposity may begin early in
life. Obesity is concurrent with a state of chronic inflammation, a well-known aetiological factor for DNA damage. In
addition, obesity has been associated with micro-nutritional deficiencies. Vitamin D has attracted attention for its anti-
inflammatory properties and role in genomic integrity and stability. The aim of this study was to determine a novel approach
for predicting genomic instability via the combined assessment of adiposity, DNA damage, systemic inflammation, and
vitamin D status.

Subjects/methods We carried out a cross-sectional study with 132 participants, aged 10-18, recruited from schools and
paediatric obesity clinics in London. Anthropometric assessments included BMI Z-score, waist and hip circumference, and
body fat percentage via bioelectrical impedance. Inflammation and vitamin D levels in saliva were assessed by enzyme-
linked immunosorbent assay. Oxidative DNA damage was determined via quantification of 8-hydroxy-2’-deoxyguanosine in
urine. Exfoliated cells from the oral cavity were scored for genomic instability via the buccal cytome assay.

Results As expected, comparisons between participants with obesity and normal range BMI showed significant differences
in anthropometric measures (p < 0.001). Significant differences were also observed in some measures of genomic instability
(p <0.001). When examining relationships between variables for all participants, markers of adiposity positively correlated
with acquired oxidative DNA damage (p <0.01) and genomic instability (p <0.001), and negatively correlated with vitamin
D (p <0.01). Multiple regression analyses identified obesity (p <0.001), vitamin D (p <0.001), and oxidative DNA damage
(p <0.05) as the three significant predictors of genomic instability.

Conclusions Obesity, oxidative DNA damage, and vitamin D deficiency are significant predictors of genomic instability.
Non-invasive biomonitoring and predictive modelling of genomic instability in young patients with obesity may contribute
to the prioritisation and severity of clinical intervention measures.
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may possibly reduce the rates of cancer in adulthood.
However, research also suggests that childhood BMI status
alone is not a useful predictor of the independent risk of
morbidity in adulthood.

Obesity in childhood and adolescence is concurrent with
a state of chronic, low-grade inflammation. Landgraf and
colleagues report altered adipose tissue biology, including
hypertrophy and hyperplasia in 6-18 years olds with obesity
[6]. As adipose tissue expands to contain stores of fat, the
microcirculation is disrupted, leading to adipose tissue
hypoxia and cell death [7]. Adipose tissue necrosis attracts
inflammatory cells and leads to the secretion of pro-
inflammatory cytokines such as TNF-a [8]. Several studies
have also identified an increased systemic circulation of C-
reactive protein (CRP), marking low-grade inflammation as
a co-feature in childhood obesity [9—16]. A recent review
has described how low-grade inflammation and reduced
natural killer cell functionality in obesity may promote
malignancy and therefore be a possible causative mechanism
for the increased risk of cancer later in life [17]. Further-
more, it is undisputed that chronic inflammation may have
detrimental effects on DNA integrity and stability, and that
genomic instability—a dynamic state characterised by ele-
vated rates of genetic changes resulting from either cell-
cycle dysfunctionalities or events affecting DNA integrity—
is an enabling characteristic for the complex, multi-step
process of tumorigenesis [18, 19].

In addition, obesity in childhood and adolescence can be
associated with a state of micronutrient deficiencies. Defi-
ciencies of several micronutrients including iron, selenium,
folate, zinc, and vitamins A, D and E have been identified
increasingly in children with obesity [20-24]. However,
vitamin D deficiency has attracted the most attention, as it is
being diagnosed increasingly in children within the UK
[25]. Over the last few years, a large proportion of studies
have identified obesity in children as a state of systemic
hypovitaminosis D [26—-32]. Furthermore, a bi-directional
Mendelian randomisation analysis across 42,024 partici-
pants has demonstrated a causative association between
obesity and vitamin D deficiency, such that a 10% increase
in BMI may reduce levels of vitamin D by 4.2% [33].
Several studies report vitamin D to play a role in inhibiting
inflammation, protecting cells from DNA damage, inducing
cell-cycle arrest and promoting apoptosis [34, 35].

Links between DNA damage and genomic instability
with obesity have been previously reported, with well-
established, early markers of carcinogenesis found asso-
ciated with excess adiposity in human participants and ani-
mal models [36]. However, so far only a few of these
investigations have been conducted in children and adoles-
cents. Higher levels of y-H2AX foci and micronuclei (MNi)
were identified in peripheral blood lymphocytes (PBLs)
from children with obesity compared to ‘healthy weight’
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controls [37, 38]. However, findings of the same type in
other tissues were inconclusive. Research in a small cohort
of Mexican children did not identify an association between
adiposity and nuclear anomalies in the buccal epithelium, yet
a more recent study in Italian children found a significant
link between childhood obesity and MNi formation in the
same tissue [39, 40]. Similarly, there are discrepancies in
studies of oxidative DNA damage in children with obesity;
one reports positive correlations between obesity status in
childhood and serum 8-OHdG, and two reports higher levels
of 8-OHdG in urine samples [41-43], while the fourth study
of urinary 8-OHdG and BMI in Italian children reports an
inverse correlation [44]. Thus, comprehensive analysis of
multiple markers of DNA damage and genomic instability,
together with markers of systemic inflammation and micro-
nutritional deficiencies, may shed light on their combined
predictive value and their applicability for the early mon-
itoring of cancer risk in relation to obesity.

To undertake this, we have adopted a non-invasive
approach to testing acquired DNA damage, genomic
instability, systemic inflammation and vitamin D status
alongside multiple markers of adiposity in adolescents
recruited from schools and paediatric obesity clinics in
London.

Participants and methods
Sample size calculation

A cross-sectional study was designed to compare markers of
adiposity, inflammation, vitamin D and DNA damage in
adolescents aged 10-18 years. The primary endpoint was
the frequency of MNi in the buccal mucosa. The required
sample size was calculated by extracting data on mean
values and variance in adults with normal weight (n =21)
and adults with obesity (n = 83) from a previous study [45].
These data were entered into G*Power (v3.1) software for
A priori calculation of sample size based on a two-tailed,
independent means test at an error rate of 1%. The required
total sample size was calculated to be 80. Whilst it would
have been most appropriate to source data from a study
conducted in adolescents, there was a lack of literature
reporting mean and variance values for buccal MNi in a
cohort of adolescents with obesity. In order to account for
this potential source of bias and to cover issues such as
missing data, the sample size was increased by 20% with an
aim to include a minimum of 96 participants.

Participant recruitment and screening

Over 200 research packs were distributed across schools in
London to pursue non-selective recruitment. Paediatric
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clinics at St George’s London NHS Trust and King’s Col-
lege Hospital London supported the recruitment of partici-
pants with obesity. In total, four schools and two NHS
paediatric obesity clinics agreed to collaborate and 171
participants were screened for inclusion. The screening
process required participants to complete a medical ques-
tionnaire to be assessed against the following exclusion
criteria: dental treatment within last 6 weeks or local
inflammation including pain, swelling and other evidence of
tooth decay, consumption of medications including multi-
vitamins, X-rays of the head and neck within the last
6 months, medical history of inflammatory conditions,
cancer and other general illness (flu, cold, fever) on the day
of sample collection. Overall, 132 participants met the
inclusion criteria and provided all anthropometric and bio-
logical samples.

Anthropometric assessments

Obesity was defined as >98th percentile of the BMI for age
and gender, in accordance with the UK-WHO classification
[46]. Participant’s height was recorded using a standard,
portable stadiometer (Marsden Weighing Machine Group)
to the nearest mm. The TANITA BC54N body composition
scales were used to determine weight and body fat per-
centage via bioelectrical impedance. Participants with a
weight >150 kg were analysed for body fat percentage via
InBody S10. Waist and hip measurements were recorded to
the nearest mm using a standard measuring tape.

Biological sample collection

For the analysis of vitamin D and CRP, one saliva sample
was collected from participants using the Salimetrics Oral
Swab (SOS) which was placed on the floor of the oral cavity
for one minute. Saliva samples were centrifuged at x1500g
and stored at —20 °C until analysis. For the analysis of 8-
OHJdG, participants collected 10-30 mL. of a mid-stream
urine sample into a polypropylene universal container. In
total, 3 uL. of Gentamycin was added per mL of sample and
stored at —80 °C until 8-OHdG analysis. For the buccal
cytome assay, cell sample collection followed the protocol
of Thomas and colleagues with no modifications [47].

Analysis of inflammation and vitamin D

CRP was quantified in saliva samples using the Salimetrics
CRP ELISA kit (Stratech, 1-3302). The analytical sensi-
tivity of the kit was 0.042 pg/mL. Saliva samples were
allowed to thaw before they were mixed and centrifuged at
x1500g for 15 min at room temperature, in order to remove
mucins and particulate matter that can interfere with the
assay. Saliva was diluted between 10 to 30-fold and assayed

in duplicate. In total, four assays were run to analyse
132 saliva samples. The average R-squared value of stan-
dard curves was 0.99.

Vitamin D was quantified in saliva samples using the 25-
OH Vitamin D (total) ELISA kit (DX-EIA- 5396, Oxford
Biosystems). The analytical sensitivity of the kit was
2.89 ng/mL. Saliva samples were allowed to thaw before
being mixed and centrifuged at x1500g for 15 min at room
temperature. Saliva was not diluted for this assay and
samples were analysed in duplicate. In total, four assays
were run to analyse 132 saliva samples. The average R-
squared value of standard curves was 0.96. Seven saliva
samples had a vitamin D level below the detection limit of
the kit, which led to the exclusion of those participants from
the dataset.

Analysis of DNA damage

The DNA damage EIA Kit (AD-EKS-350, Enzo Life Sci-
ences) was used to perform the quantification of 8-OHdG in
urine samples via a competitive ELISA reaction. The ana-
lytical sensitivity of the kit was 0.59 ng/mL. Prior to each
assay, urine samples were allowed to thaw and centrifuged
at x2000 g for ten min at room temperature. Urine samples
were diluted 20-30-fold, vortexed for 10 sec then assayed in
duplicate. In total, four assays were run to analyse 132 urine
samples. The average R-squared value of standard curves
was 0.99. To control for intra-individual variation in urinary
8-OHdG levels, a creatinine correction was applied. Urinary
creatinine was assessed by the University of Westminster
Blood Testing Service (UKAS accredited). Samples were
analysed in the ILab Aries based on the colorimetric
methodology between the reaction of creatinine with picric
acid under alkaline conditions. Urinary creatinine (mg/mL)
was calculated by multiplying the concentration of creati-
nine (mmol/L) in urine samples by the molecular weight of
creatinine then divided by one hundred. Final 8-OHdG (ng/
mg creatinine) was calculated by dividing urinary 8-OHdG
(ng/mL) by urinary creatinine (mg/mL).

Analysis of genomic instability by buccal cytome
assay

The buccal cytome assay (BCA) was performed within one
week of buccal cell sample collection according to the
protocol published by Thomas et al. with some modifica-
tions [47]. Cell sample homogenisation was performed
using a 25 G needle. In total, 150 uL. of cell sample was
added to two cytocentrifuge cups. Slides were then cen-
trifuged at 600RPM for five min at room temperature and
allowed to air dry for ten min. The slide staining process
followed that of Thomas et al. [47]. Slides were examined
under a Carl Zeiss Primo Star Light Microscope (37081).
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Unsatisfactory slides (low cell counts, debris obscuring cells
or poor staining) were repeated. To score slides, the
microscope was connected to a JENOPTIK ProgRes CT5
USB C Camera (D-07739 Jena) and images were captured
using ProgRes Software. One thousand cells per participant
were imaged at a magnification of x1000 with immersion
oil. Slides were scored blindly for their frequency of normal
differentiated cells (NDCs), cells with MNi, polynucleated
cells (PNCs) and cells with nuclear buds/nucleoplasmic
bridges (NBUDs/NPBs). The frequency of each cell type
was reported as per 1000 cells.

Statistical analysis

Data were entered into BMI SPSS version 25 and checked
for outliers using boxplots. Extreme outliers (20 out of 132)
were removed from subsequent analysis. Unpaired #-tests
were conducted on anthropometric and biomarker data of
the remaining 112 participants to test for any differences
between participants with normal range BMI and those with
obesity. Levene’s test for equality of variances was applied.
The three genomic variables, Buccal MNi, Buccal PNCs,
and Buccal NBUDs/NPBs, were combined to create a new
variable: combined genomic instability score or combined
GI score.

Pearson’s correlations were conducted on all variables to
identify relationships. Testing for a false discovery rate was
carried out to manage the risk of a Type 1 error. Two
multiple linear regression models were conducted with a
combined genomic instability score as the criterion variable.
The first was a hierarchical linear regression analysis in
which all predictor variables were included in the model:
demographic variables were included in the first stage and
the remaining variables in the second stage. A multiple
linear regression analysis was also conducted in which only
those variables that correlated with the criterion variable
were included. The following assumption tests were con-
ducted: multicollinearity, homoskedasticity, normality of
errors and linearity, resulting in the removal of predictor
variables: waist circumference and fat percentage.

Ethical considerations and approvals

Ethical approval was obtained from the Human Research
Authority and NHS Research Ethics committee (IRAS ID:
212869) and the University of Westminster (ETH1617-
1943). Data were protected in accordance with the Data
Protection Act 1998 and later updated according to the
General Data Protection Regulation and Data Protection Act
2018. Written consent was obtained from the parents of all
participants that were screened and included in the study.
Biological samples were stored in line with the Human
Tissue Act 2004.
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Table 1 Participant demographics by BMI category.

Normal Obese Total
range BMI
Ethnicity
White British or White 19 24 43
European
Black or Black British 16 12 28
South Asian or South 14 6 20
Asian British
Arab or Arab British 6 7 13
Mixed parentage 4 4 8
Sex
Female 32 29 61
Male 27 24 51
Age
Age mean (SD) 13.63 (2.36) 14.60 (2.05)
Age range (years) 10-18 10-18
Total 59 53 112

Results
Participant demographics

A contingency analysis of participants’ demographics was
performed relative to the BMI category (Table 1). Fifty-nine
participants were identified as with normal range BMI
(<98th centile) and 53 participants were identified with
obesity (>98th centile). In total, the largest proportion of
participants were White British or White European (38%)
and the smallest proportion was of mixed parentage (6.7%).
A Chi-squared analysis revealed no significant differences
in ethnic groups across BMI categories (p = 0.39). There
was a fairly equal distribution of males and females across
BMI categories (F: M ratio of 1: 0.84). The average age of
participants across categories was 13.6 years in the normal
range BMI group and 14.6 years in the group with obesity.
Overall, the age range of participants—10-18 years—was
the same within categories.

Obesity is associated with higher levels of genomic
instability in the buccal mucosa

A comparison of participants’ anthropometric and bio-
marker measures is reported in Table 2. As expected, the
average BMI Z-score (the standard deviation above or
below the mean), waist to hip ratio (WHR), waist cir-
cumference and body fat percentage were all significantly
higher for participants in the group with obesity (>98th
centile). Unpaired #-test analysis of average levels of bio-
markers between normal range BMI and participants with
obesity revealed significantly higher levels of buccal cells
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Table 2 Comparisons of

Participants’ anthropometric and BMI category N Mean Sb ! P
biomarker measures. Z score Normal range 59 031 0.94 17.66  <0.001

Obese 53 335 0.88

WHR Normal range 59 0.81 0.07 543  <0.001
Obese 53 091 0.11

Waist circumference (mm) Normal range 59  700.02 69.35 10.27  <0.001
Obese 53 1092.06 271.63

Body fat (%) Normal range 59  23.12 6.79 14.08  <0.001
Obese 53 4237 7.50

CRP (pg/mL) Normal range 59  1842.46  1205.74 1.83 0.100
Obese 53 226212 1465.51

Vitamin D (ng/mL) Normal range 59  7.64 3.65 1.70 0.093
Obese 53 6.29 5.12

8-OHdG (ng/mg creatinine) Normal range 59  186.58 109.36 1.93 0.057
Obese 53 238.12 158.60

Buccal MNi (%) Normal range 59  1.03 1.00 5.06 <0.001
Obese 53 2.09 1.24

Buccal PNCs (%) Normal range 59  7.27 3.46 3.20 0.002
Obese 53 945 3.90

Buccal NBUDs/NPBs (%) Normal range 59 1.05 1.36 5.27 <0.001
Obese 53 283 2.16

Combined genomic instability score (%) Normal range 59 0.94 0.43 5.86 <0.001
Obese 53 144 0.50

Fig. 1 Nuclear anomalies in

buccal cells from participants. Normal differentiated
Photomicrographs of exfoliated buccal cell

buccal mucosa cells stained with

Feulgen and Light Green and

viewed at 1000x magnification

under transmitted light. The

figure shows examples of Buccal cells with
normal differentiated cells (top micronuclei (MNi)
row) compared to cells

presenting different types of

nuclear abnormalities (rows

below) (buccal MNi = cells with

micronuclei; PNCs = cells Buccal Polynucleated
showing poly-nucleation or Cells (PNCs)
multiple nuclei; NBUDs/NPBs

= cells with nuclear buds and/or

nucleoplasmic bridges). Cells

were scored and nuclear

abnormalities classified Buccal cells with
according to the criteria defined nuclear buds and/or
in the ‘buccal micronucleus nucleoplasmic bridges
cytome assay’ [45]. (NBUDs/NPBs)

with MNi, polynucleated buccal cells (PNCs), and nuclear CRP and oxidative DNA damage (8-OHdG) in urine, and
buds and nucleoplasmic bridges (NBUDs/NPBs) (Fig. 1). lower levels of vitamin D in saliva. However, those dif-
Participants with obesity presented with higher levels of  ferences were not statistically significant.

SPRINGER NATURE
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Buccal NBUDs/NPBs -0.217 0.116 WLl 1.000 0.624
Combined Gl Score 25531/-0.005 0.863 0.624 1.000
-1.0

Adiposity is correlated with levels of inflammation,
vitamin D, acquired DNA damage and genomic
instability

Pearson’s correlation analysis of biomarkers across all parti-
cipants revealed a statistically significant correlation between
all anthropometric markers (p < 0.001). BMI Z-score and body
fat percentage are markers of adiposity that were positively
correlated with CRP, urinary 8-OHdG and genomic instability
markers (Fig. 2). Furthermore, BMI Z-score and body fat
percentage were negatively correlated with salivary vitamin D.
WHR and waist circumference were also negatively correlated
with vitamin D and positively correlated with DNA damage
and genomic instability markers, except that WHR was not
correlated with the frequency of MNi. However, neither WHR
nor waist circumference correlated with levels of inflamma-
tion. Interestingly, salivary CRP correlated positively with
levels of cells with MNi (p =0.029) and salivary vitamin D
correlated negatively with all DNA damage and genomic
instability markers.

BMI category, vitamin D and oxidative DNA damage
are predictors of genomic instability (models 1 and 2)

The hierarchical multiple regression analysis in Model 1,
with BMI category, age, sex and ethnicity as the predictors,
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*p<0.05, **p<0.01, ***p<0.001

explained 21.2% of the variance and was significant, F (7,
104) =5.28, p<.001. Model 2 in which Vitamin D, CRP,
8-OHdG and waist-hip ratio were added explained sig-
nificantly more variance (R2 change =0.11, F (4, 100) =
4.21, p =0.003). Model 2 explains 29.9% of the variance
(adjusted R2:0.299) and was significant (F (11, 100) =
5.30, p <0.001). The significant predictors in model 2 were
BMI category, 8OHdG and vitamin D as indicated in Table
3a.

Multiple regression analysis (model 3)

Those variables that were significant predictors in model
2 were entered into a multiple linear regression using the
standard method. A significant model emerged: F (3,
108) =17.14, p<0.001. The model explains 30.4% of
the variance in the combined genomic instability score
(adjusted R* = 0.304). Table 3b gives information about
regression coefficients for the predictor variables entered
into the model showing that BMI category, Vitamin D
and 8-OHdG were significant predictors. Therefore, par-
ticipants’ predicted combined genomic instability score is
equal to 0.841 + 0.487 (BMI category) —0.036 (Vitamin
D) —0.001 (8-OHdG), where BMI was coded as 1=
normal range, 2 = obese.
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Tl 3 Ut nd N v
coefficients for the variables Model B Std. error p t P
entered into (a) models 1, 2 and
(b) model 3. 1 BMI category 0.555 0.093 0.529 5.99 <0.001
Age (years) —0.033 0.021 —0.142 —1.58 0.116
South Asian or South Asian British 0.150 0.131 0.110 1.15 0.254
Sex 0.086 0.094 0.082 0.91 0.365
Arab or Arab British —0.082 0.149 —0.050 —0.55 0.581
Mixed Parentage —0.055 0.190 —0.027 —0.29 0.773
Black or Black British —0.006 0.114 —0.005 —0.05 0.960
2 BMI category 0.449 0.104 0.428 4.32 <0.001
Vitamin D (ng/mL) —0.031 0.010 —0.264 -3.07 0.003
8-OHdG (ng/mL creatinine) —0.001 0.000 —0.193 —2.22 0.029
WHR 0.959 0.538 0.181 1.78 0.078
Age (years) —0.028 0.020 —0.121 —1.41 0.163
South Asian or South Asian British 0.119 0.124 0.087 0.96 0.342
Sex 0.080 0.095 0.076 0.84 0.404
CRP 7.921E—6 0.000 0.025 0.31 0.761
Black or Black British 0.034 0.111 0.028 0.30 0.764
Mixed Parentage 0.001 0.182 0.001 0.01 0.994
Arab or Arab British —2.309E-5 0.149 0.000 0.00 0.999
(b) Model 3
Variable B SE B p t p
BMI category 0.487 0.085 0.464 5.72 <0.001
Vitamin D (ng/mL) —0.036 0.010 —0.301 —3.66 <0.001
8-OHdG (ng/mL) creatinine —0.001 0.000 —0.166 —2.01 0.047

Discussion

This research is the first to perform a combined, non-
invasive investigation of inflammation, vitamin D, and
multiple markers of genome damage in relation to anthro-
pometric measurements in adolescence. Our results support
the hypothesis that childhood obesity is associated with
increased genomic instability and presents implications for
a potential increase in the risk of cancer later in life. Most
importantly, we have presented for the first time a multiple
regression model for the prediction of genomic instability
based on obesity, urinary 8-OHdG and salivary vitamin D.

We found that BMI Z-score and body fat percentage
significantly and positively correlated with salivary CRP
levels, supporting the hypothesis that low-grade inflamma-
tion may increase with adiposity. Although average salivary
CRP levels were higher in participants with obesity, this
was not statistically significant due to large variations across
both cohorts. Several studies have found significantly
higher serum CRP from children with obesity compared to
controls [9-16, 48], but results in saliva are so far limited

and inconclusive. Naidoo and colleagues reported a BMI
above the 85th centile to be a significant predictor of ele-
vated salivary CRP across 170 Black South African chil-
dren [49]. Salivary CRP levels were also reported to be six
times higher in children with a BMI above the 95th centile
[50]. However, more recently Janem and colleagues
reported no significant differences in salivary CRP between
children with and without obesity in a study of 49 partici-
pants [51]. Nonetheless, moderate correlations between
serum and salivary CRP in adolescents indicate that excess
production of serum proteins may drive them to become
incorporated into saliva [52]. Therefore, further studies
would be useful to explore the predictive potential of
inflammatory markers in saliva, in relation to cancer risk.
Furthermore, we found the frequency of cells with MNi,
a type of biomarker of genomic instability, increased in
correlation with salivary CRP levels. There are several
indications that describe inflammation to have a causative
role in the initiation of malignancy. For example, a one-unit
increase in CRP levels has been linked with a 2.29-fold
increase in the risk of colon cancer [53]. Chronic
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inflammation is a well-known aetiological factor for genetic
instability and neoplastic transformations in cells and may
drive the production of excess reactive oxygen and nitrogen
species and cause structural modifications in DNA to pro-
mote pre-malignancy [54, 55]. A profile of circulating pro-
inflammatory cytokines has been associated with pre-
malignant lesions of the oral mucosa, gastric mucosa and
prostate in the absence of tissue infection [56-59]. There are
also reports that chronic inflammation may suppress anti-
tumour defence mechanisms, lead to a loss of mitotic arrest
following DNA damage and enable the accumulation of
random mutations that may contribute to the genetic het-
erogeneity seen in cancer cells [60—62]. These indications
coupled with the associations between excess adiposity and
inflammation fuel the need for long-term monitoring of
inflammation status in patients with obesity.

In addition, we found an increase in multiple markers of
adiposity correlated with a significant decrease in salivary
vitamin D levels, and that average vitamin D was lower in
participants with obesity, although this was not statistically
significant. Over the last few years, a large proportion of
studies have identified obesity in children as a state of
hypovitaminosis D [26-32]. To our knowledge, this is the
first study to explore the association between adiposity in
adolescents and vitamin D levels in saliva. The lack of
investigations of this type so far may be due to the chal-
lenges associated with saliva as a dilute biological fluid
compared to serum. Therefore, the detection of vitamin D in
saliva from patients with deficient serum levels requires a
high sensitivity assay. For this study, the commercially
available immunoassay kit with the highest analytical sen-
sitivity was sourced. We also obtained saliva samples using
the stimulated method of saliva collection as this has been
demonstrated to increase levels of salivary vitamin D [63].
However, there were seven samples that were below the
detection limit of the assay, and it is important to note that
six of these samples were from participants with obesity.
Therefore, there is a need for the development of high-
sensitive and high-throughput assays that can quantify
vitamin D in saliva and be used to develop a threshold for
point of care diagnosis of a deficiency, especially since a
strong correlation between salivary vitamin D and serum
vitamin D (R = 0.83) has been reported [64].

Most importantly, we found that salivary vitamin D may
be a useful predictor of genomic instability when combined
with weight status and urinary 8-OHdG levels via a multiple
regression model. It is likely that deficient levels of vitamin
D in obesity may exacerbate the effects of adipose tissue
dysfunction and consequent DNA damage. Unlike this
investigation, previous studies have not assessed vitamin D
status and DNA damage simultaneously in childhood obe-
sity. However, excess DNA damage in sperm cells has been
related to vitamin D deficiency and excess adiposity in a rat
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model [65]. Associations between vitamin D and markers of
genomic integrity and stability have been presented before
and align with our findings. Sufficient serum vitamin D
status has been found to modulate the effects of UV-light
induced MNi formation in human lymphocytes [66]. Fur-
thermore, vitamin D treatment has also demonstrated a
reduction in MNi frequency of rat hepatocytes and in a
model of murine lymphoma [67]. There are indications that
vitamin D may reduce oxidative DNA damage and up-
regulate DNA repair proteins to preserve genomic integrity
[68-70, 68, 69]. Several mechanisms could explain links
between vitamin D and reduced oxidative DNA damage.
Vitamin D has been described as a hormone with anti-
inflammatory properties by a number of studies [34, 71-73].
Although we did not find a correlation between salivary
CRP and vitamin D, it is of interest that previous research
has found vitamin D deficiency in childhood obesity to
coincide with increased serum high-sensitivity CRP levels
[23]. Studies in rodents imply that vitamin D deficiency can
increase the secretion of pro-inflammatory cytokines
[74, 75]. Overall, it can be postulated that vitamin D defi-
ciency is a modifiable risk factor for genomic instability in
children with obesity.

Another important finding is that 8-OHdG—as a measure
of DNA damage—correlated significantly and positively
with multiple markers of adiposity in our cohort of parti-
cipants, but did not differ significantly between participants
with and without obesity. To date, there are only three other
investigations that we are aware of which have assessed the
association between adiposity and levels of 8-OHdG in
urine. An earlier report demonstrated children with obesity
to have higher levels of 8-OHdG in urine [43]. However, an
inverse association between BMI and urinary 8-OHdG was
reported across 159 healthy Italian children [44]. Yet more
recently, higher levels of urinary 8-OHdG were reported in
children with obesity, corroborating the earlier findings, but
these children also presented with insulin resistance [42].
Our findings support the associations between adiposity and
oxidative DNA damage, similar to the findings of El
Wakkad et al. [41], who reported body fat percentage
assessed via bioelectrical impedance and BMI to be posi-
tively correlated with 8-OHdG in serum across 103 ado-
lescents. These findings are important because of the role
that oxidative DNA damage can play in generating genomic
instability and a pre-cancerous state.

There is evidence that oxidative DNA damage can pro-
mote genomic instability. 8-OHdG can contribute to chro-
mosomal instability by altering the maintenance of telomere
length [76]. A recent review has highlighted that 8-OHdG
lesions occur more frequently in telomeric DNA than bulk
genomic DNA or microsatellite regions [77]. This is inter-
esting because telomere length in children with obesity has
been found to be 23% shorter compared to age-matched
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healthy weight controls [78]. Telomere shortening is also
associated with an increase in nuclear anomalies, in parti-
cular nuclear buds and bridges [79]. These findings stress
the importance of including levels of 8-OHdG to predict
chromosomal instability in childhood obesity.

It is of interest that we found average levels of three
different nuclear anomalies in the buccal mucosa to be sig-
nificantly higher in participants with obesity compared to
healthy weight controls. To the best of our knowledge, our
research is the first to present significant correlations
between multiple markers of adiposity and the frequency of
biomarkers of genomic instability such as micronucleated
cells, nuclear buds/bridges and PNCs in adolescence. In
2009, the first investigation of adiposity and nuclear
anomalies in the buccal mucosa found no association but
was conducted with only 20 Mexican 7-11 years olds in
each weight category [39]. More recently, Idolo and col-
leagues investigated the impact of various lifestyle factors on
nuclear anomalies in the buccal mucosa of 6-8 years old
Italians and concluded obesity in children to be an inde-
pendent risk factor for increased MNi frequency [40]. There
is evidence that an increased prevalence of MNi in the oral
mucosa may be reflective of chromosomal instability
occurring in other tissues [80]. Therefore, it is unsurprising
that our findings support previous research that found an
increased level of MNi and chromosomal aberrations in
PBLs from children with obesity [37]. Overall, these find-
ings confer that childhood obesity is associated with an
increased state of acquired DNA damage and genomic
instability. Therefore, it is important to consider the potential
implications of our findings in relation to cancer risk.

An increased frequency of MNi in buccal epithelial cells
has been consistently identified in pre-malignancy and
malignancy of the aerodigestive tract [§1-85]. There is also
evidence to suggest that an increased MNi frequency in
buccal cells may be related to the risk of cancer at other sites
including the breast, uterus, lung, colorectum, and bladder
[86—89]. There are indications that MNi containing whole
chromosomes can proceed into several cell generations and
be reincorporated into the genome following further mitotic
divisions [90]. MNi division cycles can lead to catastrophic
genetic re-arrangements in a single or few chromosomes—a
newly described mutational process called chromothripsis
[91]. Such localised chromosomal re-arrangements may be
transferred to daughter nuclei in subsequent mitotic cycles
and play a role in generating a pre-cancerous genome.
Furthermore, MNi can display a lack of nuclear envelope
integrity when occurring in cancer cells [92]. Firstly,
impaired nuclear envelope function has been related to an
increase in DNA damage in MNi within cancer cells—a
process that may also promote chromothripsis [92]. It is also
likely that the nuclear envelope of a micronucleus is more
likely to rupture, causing exposure of self-DNA to the

cytosol. Possible immuno-stimulatory consequences of this
event have recently been reported in a mouse model and
human cancer cells [93]. This means that the occurrence of
MNi may also drive carcinogenesis by triggering inflam-
mation. Interestingly, we found a significant correlation in
the oral cavity between levels of CRP and cells with MNi
across all participants. Longitudinal studies in large cohorts
may consolidate the use of the buccal cytome assay as a tool
for cancer risk prediction.

Also important are the findings of excess average levels
of nuclear buds and nucleoplasmic bridges in participants
with obesity compared to controls. NBUDs/NPBs has been
described as a consequence of unrepaired DNA damage or
gene amplification and have also been linked with carci-
nogenesis. An increased frequency of nuclear buds and
nucleoplasmic bridges was documented in PBLs from
cancer patients compared to healthy controls [89]. Fur-
thermore, nucleoplasmic bridges are associated with
breakage-fusion-bridge (BFB) cycles that may drive chro-
mosomal rearrangements seen in tumour genomes [94].
DNA amplification and chromosomal rearrangements have
been noted in cancers of the lung, breast, prostate, GI tract
and skin [95].

We also found a higher average frequency of PNCs in
participants with obesity, which is indicative of increased
cytokinesis failure. Cancer cell lines have been used to
demonstrate the mutagenic consequences of binucleated
cells [96]. In a recent review, tetraploidy and cytokinesis
failure have been evaluated as mechanisms for aneuploidy
in subsequent mitotic cycles. It has been suggested that
these events can lead to genetic diversification in cancer
cells that possibly provide developmental advantages [97].
An increased frequency of binucleated cells has been
identified in patients with cancers of the breast, head, neck
and mesothelium [98-100]. Furthermore, a number of dif-
ferent mitotic and cell cycle checkpoint proteins that reg-
ulate cytokinesis can be mutated in cancer, indicating that
cytokinesis failure could possibly be an early event in
tumorigenesis [101].

In summary, our results support the hypothesis that
childhood obesity is associated with increased genomic
instability. Importantly, we have found that obesity, vitamin
D and oxidative DNA damage can together predict genomic
instability. This investigation has several strengths. Firstly,
we combined analysis of multiple markers of DNA damage
and genomic instability which have been linked to the
initiation and progression of cancer. Secondly, we investi-
gated several parameters of adiposity in addition to tradi-
tionally reported BMI Z-scores in children and adolescents.
Furthermore, we have outlined a novel, non-invasive
approach for combined assessment of inflammation,
micronutrition and genome health. Our findings warrant
further research into the applicability of this approach as a
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non-invasive clinical tool for predicting early, pre-
pathological genomic changes in young patients with
obesity.

Conclusions

By applying a non-invasive approach for the combined
assessment of parameters of adiposity, inflammation, Vita-
min D status and genome damage, we have developed a
multiple regression model for the prediction of genomic
instability in adolescence. Further work may lead to its
application in the prioritisation and provision of clinical
intervention measures to prevent increased risk of malig-
nancy in patients with obesity.
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