15,330 research outputs found

    Circadian rhythm of leaf movement in Capsicum annuum observed during centrifugation

    Get PDF
    Plant circadian rhythms of leaf movement in seedlings of the pepper plant (Capsicum annuum L., var. Yolo Wonder) were observed at different g-levels by means of a centrifuge. Except for the chronically imposed g-force all environmental conditions to which the plants were exposed were held constant. The circadian period, rate of change of amplitude of successive oscillations, symmetry of the cycles, and phase of the rhythm all were found not to be significantly correlated with the magnitude of the sustained g-force

    Limitation on the use of the horizontal clinostat as a gravity compensator

    Get PDF
    If the horizontal clinostat effectively compensates for the influence of the gravity vector on the rotating plant, it makes the plant unresponsive to whatever chronic acceleration may be applied transverse to the axis of clinostat rotation. This was tested by centrifuging plants while they were growing on clinostats. For a number of morphological endpoints of development, the results depended on the magnitude of the applied g-force. Gravity compensation by the clinostat was incomplete, and this conclusion is in agreement with results of satellite experiments which are reviewed

    Effects of vertical rotation on Arabidopsis development

    Get PDF
    Various gross morphological end points of Arabidopsis development are examined in an attempt to separate the effects of growth on the horizontal clinostat into a component caused by rotation alone and another component caused by the altered position with respect to the direction of the g-vector. In a series of tests which involved comparisons between vertical stationary plants, vertical rotated plants, and plants rotated on clinostats, certain characters were consistently influenced by vertical rotation alone. The characters for which this effect was statistically significant were petiole length and leaf blade width

    Effects of increased G-force on the nutations of sunflower seedlings

    Get PDF
    A centrifuge was used to provide chronic acceleration in order to study the nutation of six-day old sunflower hypocotyls at 1 to 20 times normal gravity (g). At the upper end of the g-range nutational movement was impeded and at times erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range from 1 to 9 g the period of nutation was independent of the resultant g-force. That finding is interpreted as evidence that the geotropic response time -- i.e., the time needed for growth hormone transport from the region of g-sensing to the region of bending response --was not influenced significantly by substantial increments of the g-level, since geotropic response time is related to the period of nutation

    A sandpile model with tokamak-like enhanced confinement phenomenology

    Get PDF
    Confinement phenomenology characteristic of magnetically confined plasmas emerges naturally from a simple sandpile algorithm when the parameter controlling redistribution scalelength is varied. Close analogues are found for enhanced confinement, edge pedestals, and edge localised modes (ELMs), and for the qualitative correlations between them. These results suggest that tokamak observations of avalanching transport are deeply linked to the existence of enhanced confinement and ELMs.Comment: Manuscript is revtex (latex) 1 file, 7 postscript figures Revised version is final version accepted for publication in PRL Revisions are mino

    Surfatron and stochastic acceleration of electrons in astrophysical plasmas

    Get PDF
    Electron acceleration by large amplitude electrostatic waves in astrophysical plasmas is studied using particle-in-cell (PIC) simulations. The waves are excited initially at the electron plasma frequency ωpe\omega_{\rm pe} by a Buneman instability driven by ion beams: the parameters of the ion beams are appropriate for high Mach number astrophysical shocks, such as those associated with supernova remnants (SNRs). If ωpe\omega_{\rm pe} is much higher than the electron cyclotron frequency Ωe\Omega_{\rm e}, the linear phase of the instability does not depend on the magnitude of the magnetic field. However, the subsequent time evolution of particles and waves depends on both ωpe/Ωe\omega_{\rm pe}/\Omega_{\rm e} and the size of the simulation box LL. If LL is equal to one wavelength, λ0\lambda_0, of the Buneman-unstable mode, electrons trapped by the waves undergo acceleration via the surfatron mechanism across the wave front. This occurs most efficiently when ωpe/Ωe≃100\omega_{\rm pe}/\Omega_{\rm e} \simeq 100: in this case electrons are accelerated to speeds of up c/2c/2 where cc is the speed of light. In a simulation with L=4λ0L=4\lambda_0 and ωpe/Ωe=100\omega_{\rm pe}/\Omega_{\rm e} = 100, it is found that sideband instabilities give rise to a broad spectrum of wavenumbers, with a power law tail. Some stochastic electron acceleration is observed in this case, but not the surfatron process. Direct integration of the electron equations of motion, using parameters approximating to those of the wave modes observed in the simulations, suggests that the surfatron is compatible with the presence of a broad wave spectrum if ωpe/Ωe>100\omega_{\rm pe}/\Omega_{\rm e}> 100. It is concluded that a combination of stochastic and surfatron acceleration could provide an efficient generator of mildly relativistic electrons at SNR shocks

    Bose-Einstein Correlations for Three-Dimensionally Expanding, Cylindrically Symmetric, Finite Systems

    Get PDF
    The parameters of the Bose-Einstein correlation function may obey an {\it MtM_t-scaling}, as observed in S+PbS + Pb and Pb+PbPb + Pb reactions at CERN SPS. This MtM_t-scaling implies that the Bose-Einstein correlation functions view only a small part of the big and expanding system. The full sizes of the expanding system at the last interaction are shown to be measurable with the help the invariant momentum distribution of the emitted particles. A vanishing duration parameter can also be generated in the considered model-class with a specific MtM_t dependence.Comment: 35 pages, ReVTeX, LaTeX, no figures, discussion extende

    Self-consistent nonlinear kinetic simulations of the anomalous Doppler instability of suprathermal electrons in plasmas

    Get PDF
    Suprathermal tails in the distributions of electron velocities parallel to the magnetic field are found in many areas of plasma physics, from magnetic confinement fusion to solar system plasmas. Parallel electron kinetic energy can be transferred into plasma waves and perpendicular gyration energy of particles through the anomalous Doppler instability (ADI), provided that energetic electrons with parallel velocities v ≥ (ω + Ωce )/k are present; here Ωce denotes electron cyclotron frequency, ω the wave angular frequency and k the component of wavenumber parallel to the magnetic field. This phenomenon is widely observed in tokamak plasmas. Here we present the first fully self-consistent relativistic particle-in-cell simulations of the ADI, spanning the linear and nonlinear regimes of the ADI. We test the robustness of the analytical theory in the linear regime and follow the ADI through to the steady state. By directly evaluating the parallel and perpendicular dynamical contributions to j · E in the simulations, we follow the energy transfer between the excited waves and the bulk and tail electron populations for the first time. We find that the ratio Ωce /(ωpe + Ωce ) of energy transfer between parallel and perpendicular, obtained from linear analysis, does not apply when damping is fully included, when we find it to be ωpe /(ωpe + Ωce ); here ωpe denotes the electron plasma frequency. We also find that the ADI can arise beyond the previously expected range of plasma parameters, in particular when Ωce > ωpe . The simulations also exhibit a spectral feature which may correspond to observations of suprathermal narrowband emission at ωpe detected from low density tokamak plasmas

    Disturbance and organization of macroalgal assemblages in the Northwest Atlantic

    Full text link
    • …
    corecore