188 research outputs found

    Linking electrical and thermal conductivity through cross-property inclusion modelling

    Get PDF
    We derive a new cross-property differential effective medium scheme for a composite material’s thermal conductivity as a function of its electrical conductivity and vice versa. Our scheme assumes that one phase is embedded in the other as inclusions. The relations are independent of inclusion volume fraction, but depend on the aspect ratio of the inclusions. We show that the method successfully models published laboratory measurements on a copper-graphite composite, with the inferred aspect ratio matching the physical shape of the inclusions. This work complements earlier results on elastic-electrical cross-property differential effective medium modelling, and has the potential to be extended for different cross-property relationships

    Linking elastic and electrical properties of rocks using cross-property DEM

    Get PDF

    Strength a strong predictor of paddling performance in competitive surfers

    Get PDF

    Ramifications of Optical Pumping on the Interpretation of Time-Resolved Photoemission Experiments on Graphene

    Get PDF
    In pump-probe time and angle-resolved photoemission spectroscopy (TR-ARPES) experiments the presence of the pump pulse adds a new level of complexity to the photoemission process in comparison to conventional ARPES. This is evidenced by pump-induced vacuum space-charge effects and surface photovoltages, as well as multiple pump excitations due to internal reflections in the sample-substrate system. These processes can severely affect a correct interpretation of the data by masking the out-of-equilibrium electron dynamics intrinsic to the sample. In this study, we show that such effects indeed influence TR-ARPES data of graphene on a silicon carbide (SiC) substrate. In particular, we find a time- and laser fluence-dependent spectral shift and broadening of the acquired spectra, and unambiguously show the presence of a double pump excitation. The dynamics of these effects is slower than the electron dynamics in the graphene sample, thereby permitting us to deconvolve the signals in the time domain. Our results demonstrate that complex pump-related processes should always be considered in the experimental setup and data analysis.Comment: 9 pages, 4 figure

    Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene

    Get PDF
    Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.Comment: 5 pages, 4 figure

    Quantitative biomonitoring of polycyclic aromatic compounds (PACs) using the Sydney rock oyster (Saccostrea glomerata)

    Get PDF
    Increasing our understanding of the bioavailable fractions of polycyclic aromatic compounds (PACs) in an aquatic environment is important for the assessment of the environmental and human health risks posed by PACs. More importantly, the behaviour of polar polycyclic aromatic hydrocarbons (polar PAHs), which are metabolites of legacy PAHs, are yet to be understood. We, therefore, carried out a study involving Sydney rock oysters (Saccostrea glomerata) sourced from two locations, that had been exposed to PAH contamination, within an Australian south-east estuary. Biomonitoring of these oysters, following relocation from the estuary to a relatively isolated waterway, was done at 24 and 72 h after deployment and subsequently at 7, 14, 28, 52 and 86 days. Control samples from Camden Haven River were sampled for PAC analyses just before deployment, after 28 days and at the end of the study (day 86). Lipid-normalised concentrations in oyster tissues across the 86-day sampling duration, elimination rate constants (k2), biological half-lives (t1/2) and time required to reach 95% of steady-state (t95) were reported for parent PAHs and the less-monitored polar PAHs including nitrated/oxygenated/heterocyclic PAHs (NPAHs, oxyPAHs and HPAHs) for the three differently sourced oyster types. Most of the depurating PAHs and NPAHs, as well as 9-FLO (oxyPAH), had k2 values significantly different from zero (p < 0.05). All other oxyPAHs and HPAHs showed no clear depuration, with their concentrations remaining similar. The non-depuration of polar PAHs from oyster tissues could imply greater human health risk compared to their parent analogues

    Spin and valley control of free carriers in single-layer WS2

    Get PDF
    Data are available from http://dx.doi.org/10.17630/a25b95c6-b9e8-4ecf-9559-bb09e58a7835The semiconducting single-layer transition metal dichalcogenides have been identified as ideal materials for accessing and manipulating spin- and valley-quantum numbers due to a set of favorable optical selection rules in these materials. Here, we apply time- and angle-resolved photoemission spectroscopy to directly probe optically excited free carriers in the electronic band structure of a high quality single layer (SL) of WS2 grown on Ag(111). We present a momentum resolved analysis of the optically generated free hole density around the valence band maximum of SL WS2 for linearly and circularly polarized optical excitations. We observe that the excited free holes are valley polarized within the upper spin-split branch of the valence band, which implies that the photon energy and polarization of the excitation permit selective excitations of free electron-hole pairs with a given spin and within a single valley.PostprintPeer reviewe
    corecore