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A B S T R A C T   

We derive a new cross-property differential effective medium scheme for a composite material’s thermal con-
ductivity as a function of its electrical conductivity and vice versa. Our scheme assumes that one phase is 
embedded in the other as inclusions. The relations are independent of inclusion volume fraction, but depend on 
the aspect ratio of the inclusions. We show that the method successfully models published laboratory mea-
surements on a copper-graphite composite, with the inferred aspect ratio matching the physical shape of the 
inclusions. This work complements earlier results on elastic-electrical cross-property differential effective me-
dium modelling, and has the potential to be extended for different cross-property relationships.   

1. Introduction 

The relations linking a composite’s effective physical properties, 
known as cross-property relations, can be useful when one of the com-
posite’s properties is easier to measure than that which we wish to 
quantify [1]. Rigorous cross-property bounds (e.g., [2,1,3]) and exact 
relations (e.g., [4–6]) have been developed to this end. 

More recently, Cilli and Chapman [7] derived a simple cross- 
property model from first principles with a single model parameter 
and no phase volume fraction terms. Their model - a differential effec-
tive medium (DEM) approximation (e.g., [8,9]) - accurately estimated 
the elastic properties of brine-saturated clean sandstone cores from 
electrical conductivity measurements, and vice versa. 

Here we extend this cross-property DEM approximation to model the 
relationship between a composite’s thermal and electrical conductiv-
ities. We find the model accurately fits the thermal-electrical measure-
ments of Mazloum et al. [10] made on copper-graphite composites and 
that there is good agreement between the best-fitting model parameter, 
inclusion aspect ratio, and the experimentally measured aspect ratio of 
the graphite flake inclusions. 

2. Theory 

2.1. Electrical and thermal modelling 

The electrical DEM approximation for a two-phase composite con-
taining ellipsoidal inclusions can be expressed as [11] 

dσe

dϕ
=

(σ2 − σe)R(2e)

(1 − ϕ)
, (1)  

where σe is the effective electrical conductivity tensor, σ2 is the con-
ductivity tensor of the inclusion phase, ϕ is the inclusion volume frac-
tion, and 

R(2e) =
[
I + A*⋅σ− 1

e ⋅(σ2 − σe)
]− 1

, (2)  

where A*, a function of inclusion aspect ratio α, is the depolarisation 
tensor for an ellipsoid in a matrix with an effective conductivity tensor σe 
[11]. Eq. 1 is solved with boundary condition σe(ϕ = 0) = σ1, where σ1 
is the background material’s electrical conductivity tensor. 

In the case of randomly oriented spheroidal inclusions in an isotropic 
background material, the isotropic form of Eq. 1 approximates the me-
dium’s effective isotropic properties regardless of the inclusion phase’s 
intrinsic anisotropy. This isotropic DEM approximation is [11] 
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dσe

dϕ
=

(σ2 − σe)R(2e)

(1 − ϕ)
, (3)  

where σe is the isotropic effective conductivity, σ2 is the isotropic 
effective conductivity of randomly oriented inclusions, and R(2e) =

Tr
(
R(2e))/3, which evaluates to 

R(2e) =
1
3
σe

[
4

σe + σ2 + L(σe − σ2)
+

1
σe − L(σe − σ2)

]

, (4)  

with principal depolarisation factor L (e.g., [12]). Eq. 3 is solved with 
boundary condition σe(ϕ = 0) = σ1, where σ1 is the background ma-
terial’s isotropic electrical conductivity. 

Here, we model a material with randomly oriented anisotropic 
spheroidal inclusions embedded in an isotropic background material, 
which thereby possesses an isotropic effective electrical conductivity. 
This composite’s thermal conductivity, electrical permittivity, magnetic 
permeability, and diffusion constant can also be modelled using inclu-
sion models [11,13] such as Eq. 3. Accordingly, we replace electrical 
conductivity terms σ with thermal conductivity terms κ in Eqs. 3 and 4 to 
estimate this composite’s effective thermal conductivity, obtaining [11] 

dκe

dϕ
=

(κ2 − κe)W(2e)

(1 − ϕ)
, (5)  

where 

W(2e) =
1
3
κe

[
4

κe + κ2 + L(κe − κ2)
+

1
κe − L(κe − κ2)

]

. (6) 

Eq. 5 is solved with boundary condition κe(ϕ = 0) = κ1, where κ1 is 
the background material’s thermal conductivity. 

2.2. Thermal-electrical modelling 

We apply the chain rule to Eqs. 3 and 5 to obtain the thermal- 
electrical cross-property DEM model 

dκe

dσe
=

(κ2 − κe)

(σ2 − σe)

W(2e)

R(2e) . (7) 

The inverse of Eq. 7 is its reciprocal and a forward model in its own 
right: 

dσe

dκe
=

(σ2 − σe)

(κ2 − κe)

R(2e)

W(2e) . (8) 

Eq. 7 has boundary condition κe(σe = σ1) = κ1 and Eq. 8 has 
boundary condition σe(κe = κ1) = σ1. Theoretically, the mathematical 
form of Eqs. 7 and 8 generalises to relate any two of the composite’s 
effective thermal conductivity, electrical conductivity, electrical 
permittivity, magnetic permeability, and diffusion constant. 

In the cases of spherical (S) inclusions (α = 1,L = 1/3), disk-shaped 
(D) inclusions (α = 0,L = 1), and needle-shaped (N) inclusions (α = ∞,

L = 0), Eq. 7 simplifies to 

dκe

dσe

⃒
⃒
⃒
⃒

S
=

κe

σe

(κ2 − κe)

(σ2 − σe)

(2σe + σ2)

(2κe + κ2)
; (9)  

dκe

dσe

⃒
⃒
⃒
⃒

D
=

σ2

κ2

(κ2 − κe)

(σ2 − σe)

(2κ2 + κe)

(2σ2 + σe)
; (10)  

dκe

dσe

⃒
⃒
⃒
⃒

N
=

(σ2 + σe)

(κ2 + κe)

(κ2 − κe)

(σ2 − σe)

(κ2 + 5κe)

(σ2 + 5σe)
. (11) 

The analogous special cases of Eq. 8 for spherical, disk-, and needle- 
shaped inclusions are the reciprocals of Eqs. (9)–(11) respectively. 

3. Method 

We modelled the thermal-electrical laboratory measurements of 
Mazloum et al. [10] made on five samples of copper containing 
randomly oriented graphite flakes with volume fractions of 0, 0.1, 0.3, 
0.4, and 0.5, and an experimentally measured aspect ratio of 0.1. 

Following Mazloum et al. [10] after Kováčik and Emmer [14] and 
Kováčik and Bielekt [15], the graphite thermal and electrical conduc-
tivities were 274 W/m K and 0.59 × 10− 8 1/Ω m respectively along a 
flake’s short axis, and 10 W/m K and 2.26 × 10− 8 1/Ω m respectively 
along its long axes. The copper had isotropic thermal and electrical 
conductivities of 348.6 W/m K and 58.8 × 10− 8 1/Ω m respectively. 

To assess the cross-property DEM approximation’s performance on 
these samples, we aimed to invert Eq. 7 for the unknown inclusion 
aspect ratio then compare this with the laboratory-measured inclusion 
aspect ratio. However, the effective isotropic electrical and thermal 
conductivities of the randomly oriented anisotropic inclusions were also 
unknown. Thus, we inverted Eq. 7 for all three parameters simulta-
neously by minimising the l2-norm of the misfits in measured and 
modelled thermal conductivity, using the samples’ known effective and 
background conductivities as input. We excluded the 50% graphite 
sample from this inversion as the model assumes a low inclusion 
concentration. 

We then forward modelled effective thermal and electrical conduc-
tivity trends using Eqs. 7 and 8 respectively for inclusion aspect ratios 
α ∈ {0,10− 2,10− 1, 1,∞} along with the thermal-electrical Hashin–Sh-
trikman bounds (e.g., [16]). 

4. Results and Discussion 

The solved effective inclusion thermal and electrical conductivities 
were 24.1 W/m K and 0.61 × 10− 8 1/Ω m respectively. Interestingly, 
both effective inclusion conductivities were close to those along the 
graphite flakes’ symmetry axes which respectively possessed lower 
conductivities. The solved inclusion aspect ratio was 0.097, which 
shows good agreement with the experimentally measured aspect ratio of 
0.1. 

Fig. 1 shows forward modelled thermal and electrical conductivity 
trends produced using Eqs. 7 and 8. The model is asymptotically correct 
and the α = 0.1 trend fits the measurements on samples containing up to 
40% graphite. The modelled trend for disk-shaped inclusions seems to 
fall on the lower Hashin–Shtrikman bound, which may be expected as 
single-property DEM approximations can equal the lower Hashin–Sh-
trikman bound in the case of disk-shaped inclusions [17]. 

The agreement between modelled and measured inclusion aspect 
ratio occurs as the composites obey the physical assumptions of the 
model reasonably well. This contrasts with porous rocks, where inclu-
sion modelling assumptions are often violated and modelled aspect ra-
tios do not obviously relate to pore space architectures (e.g., [18,19]). 

5. Conclusions 

We have derived a cross-property model which relates a composite’s 
thermal and electrical conductivities. This model is independent of in-
clusion volume fraction, depending only on inclusion shape. We have 
modelled published data and observed good agreement between the 
measured and inverted inclusion aspect ratios. This work builds on a 
similar electrical-elastic model, and we note its potential to extend to 
other cross-property relations. 
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