1,693 research outputs found

    Incidence and costs of unintentional falls in older people in the United Kingdom

    Get PDF
    STUDY OBJECTIVE: To estimate the number of accident and emergency (A&E) attendances, admissions to hospital, and the associated costs as a result of unintentional falls in older people. DESIGN: Analysis of national databases for cost of illness. SETTING: United Kingdom, 1999, cost to the National Health Service (NHS) and Personal Social Services (PSS). PARTICIPANTS: Four age groups of people 60 years and over (60–64, 65–69, 70–74, and 75) attending an A&E department or admitted to hospital after an unintentional fall. Databases analysed were the Home Accident Surveillance System (HASS) and Leisure Accident Surveillance System (LASS), and Hospital Episode Statistics (HES). MAIN RESULTS: There were 647 721 A&E attendances and 204 424 admissions to hospital for fall related injuries in people aged 60 years and over. For the four age groups A&E attendance rates per 10 000 population were 273.5, 287.3, 367.9, and 945.3, and hospital admission rates per 10 000 population were 34.5, 52.0, 91.9, and 368.6. The cost per 10 000 population was £300 000 in the 60–64 age group, increasing to £1 500 000 in the 75 age group. These falls cost the UK government £981 million, of which the NHS incurred 59.2%. Most of the costs (66%) were attributable to falls in those aged 75 years. The major cost driver was inpatient admissions, accounting for 49.4% of total cost of falls. Long term care costs were the second highest, accounting for 41%, primarily in those aged 75 years. CONCLUSIONS: Unintentional falls impose a substantial burden on health and social services

    Performance of the Birmingham Solar-Oscillations Network (BiSON)

    Get PDF
    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20. First online: 2015 December 7. Open Acces

    A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies

    Get PDF
    The frequencies of the solar acoustic oscillations vary over the activity cycle. The variations in other activity proxies are found to be well correlated with the variations in the acoustic frequencies. However, each proxy has a slightly different time behaviour. Our goal is to characterize the differences between the time behaviour of the frequency shifts and of two other activity proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a new observable that is particularly sensitive to the short-term frequency variations. We then compare the observable when computed from model frequency shifts and from observed frequency shifts obtained with the Global Oscillation Network Group (GONG) for cycle 23. Our analysis shows that on the shortest time-scales the variations in the frequency shifts seen in the GONG observations are strongly correlated with the variations in the area covered by sunspots. However, a significant loss of correlation is still found. We verify that the times when the frequency shifts and the sunspot area do not vary in a similar way tend to coincide with the times of the maxima of the quasi-biennial variations seen in the solar seismic data. A similar analysis of the relation between the 10.7cm flux and the frequency shifts reveals that the short-time variations in the frequency shifts follow even more closely those of the 10.7cm flux than those of the sunspot area. However, a loss of correlation between frequency shifts and 10.7cm flux variations is still found around the same times.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    Get PDF
    The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short- and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.Comment: 4 pages, 2 figures, proceedings of the Joint TASC2 - KASC9 Workshop - SPACEINN - HELAS8 Conference "Seismology of the Sun and the Distant Stars 2016: Using Today's Successes to Prepare the Future". To be published by the EPJ Web of Conference

    The Octave (Birmingham - Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars

    Full text link
    The number of main-sequence stars for which we can observe solar-like oscillations is expected to increase considerably with the short-cadence high-precision photometric observations from the NASA Kepler satellite. Because of this increase in number of stars, automated tools are needed to analyse these data in a reasonable amount of time. In the framework of the asteroFLAG consortium, we present an automated pipeline which extracts frequencies and other parameters of solar-like oscillations in main-sequence and subgiant stars. The pipeline uses only the timeseries data as input and does not require any other input information. Tests on 353 artificial stars reveal that we can obtain accurate frequencies and oscillation parameters for about three quarters of the stars. We conclude that our methods are well suited for the analysis of main-sequence stars, which show mainly p-mode oscillations.Comment: accepted by MNRA

    Screening and diagnostic assessment of neurodevelopmental disorders in a male prison

    Get PDF
    Purpose The purpose of this paper is to identify neurodevelopmental disorders and difficulties (NDD) in a male prison. The study used standardised tools to carry out screening and diagnostic assessment of the attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID). Design/methodology/approach The ADHD self-report scale, 20-item autism quotient and the Learning Disability Screening Questionnaire were used to screen 240 male prisoners. Prisoners who screened positive on one or more of these scales or self-reported a diagnosis of ADHD, ASD or ID were further assessed using the diagnostic interview for ADHD in adults, adapted Autism Diagnostic Observation Schedule and the Quick Test. Findings Of the 87 prisoners who screened positive for NDD and were further assessed, 70 met the study’s diagnostic criteria for ADHD, ASD or ID. Most of those with NDD (51 per cent) had previously gone unrecognised and a high proportion (51 per cent) were identified through staff- or self-referral to the study. Originality/value The study demonstrated that improving awareness and providing access to skilled, standardised assessment within a male prison can result in increased recognition and identification of NDD

    Atmospheric extinction coefficients in the Ic\mathrm{I_c} band for several major international observatories: Results from the BiSON telescopes, 1984 to 2016

    Get PDF
    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory (LCO), Chile; Observatorio del Teide, Iza\~{n}a, Tenerife, Canary Islands; the South African Astronomical Observatory (SAAO), Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the Ic\mathrm{I_c} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984 to 2016.Comment: 15 pages, 10 figures, 4 tables. Accepted by Astronomical Journal: 2017 July 2

    The onset of solar cycle 24: What global acoustic modes are telling us

    Full text link
    We study the response of the low-degree, solar p-mode frequencies to the unusually extended minimum of solar surface activity since 2007. A total of 4768 days of observations collected by the space-based, Sun-as-a-star helioseismic GOLF instrument are analyzed. A multi-step iterative maximum-likelihood fitting method is applied to subseries of 365 days and 91.25 days to extract the p-mode parameters. Temporal variations of the l=0, 1, and 2 p-mode frequencies are then obtained from April 1996 to May 2009. While the p-mode frequency shifts are closely correlated with solar surface activity proxies during the past solar cycles, the frequency shifts of the l=0 and l=2 modes show an increase from the second half of 2007, when no significant surface activity is observable. On the other hand, the l=1 modes follow the general decreasing trend of the solar surface activity. The different behaviours between the l=0 and l=2 modes and the l=1 modes can be interpreted as different geometrical responses to the spatial distribution of the solar magnetic field beneath the surface of the Sun. The analysis of the low-degree, solar p-mode frequency shifts indicates that the solar activity cycle 24 started late 2007, despite the absence of activity on the solar surface.Comment: To be accepted by A&A (with minor revisions), 4 pages, 3 figures, 1 tabl

    Modelling the response of potassium vapour in resonance scattering spectroscopy

    Get PDF
    Resonance scattering techniques are often used to study the properties of atoms and molecules. The Birmingham Solar Oscillations Network (BiSON) makes use of Resonance Scattering Spectroscopy by applying the known properties of potassium vapour to achieve ultra-precise Doppler velocity observations of oscillations of the Sun. We present a model of the resonance scattering properties of potassium vapour which can be used to determine the ideal operating vapour temperature and detector parameters within a spectrophotometer. The model is validated against a typical BiSON vapour cell using a tunable diode laser, where the model is fitted to observed absorption profiles at a range of temperatures. Finally we demonstrate using the model to determine the effects of varying scattering detector aperture size, and vapour temperature, and again validate against observed scattering profiles. Such information is essential when designing the next generation of BiSON spectrophotometers (BiSON:NG), where the aim is to make use of off-the-shelf components to simplify and miniaturise the instrumentation as much as practical.Comment: 18 pages, 11 figures. Accepted by Journal of Physics B: 2020 February 1
    • …
    corecore