4,132 research outputs found

    Quasi-Biennial variations in helioseismic frequencies: Can the source of the variation be localized?

    Full text link
    We investigate the spherical harmonic degree (l) dependence of the "seismic" quasi-biennial oscillation (QBO) observed in low-degree solar p-mode frequencies, using Sun-as-a-star Birmingham Solar Oscillations Network (BiSON) data. The amplitude of the seismic QBO is modulated by the 11-yr solar cycle, with the amplitude of the signal being largest at solar maximum. The amplitude of the signal is noticeably larger for the l=2 and 3 modes than for the l=0 and 1 modes. The seismic QBO shows some frequency dependence but this dependence is not as strong as observed in the 11-yr solar cycle. These results are consistent with the seismic QBO having its origins in shallow layers of the interior (one possibility being the bottom of the shear layer extending 5per cent below the solar surface). Under this scenario the magnetic flux responsible for the seismic QBO is brought to the surface (where its influence on the p modes is stronger) by buoyant flux from the 11-yr cycle, the strong component of which is observed at predominantly low-latitudes. As the l=2 and 3 modes are much more sensitive to equatorial latitudes than the l=0 and 1 modes the influence of the 11-yr cycle on the seismic QBO is more visible in l=2 and 3 mode frequencies. Our results imply that close to solar maximum the main influence of the seismic QBO occurs at low latitudes (<45 degrees), which is where the strong component of the 11-yr solar cycle resides. To isolate the latitudinal dependence of the seismic QBO from the 11-yr solar cycle we must consider epochs when the 11-yr solar cycle is weak. However, away from solar maximum, the amplitude of the seismic QBO is weak making the latitudinal dependence hard to constrain.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Asteroseismology of Solar-Type and Red-Giant Stars

    Full text link
    We are entering a golden era for stellar physics driven by satellite and telescope observations of unprecedented quality and scope. New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology, the study of stars by the observation of natural, resonant oscillations. Asteroseismology is proving to be particularly significant for the study of solar-type and red-giant stars. These stars show rich spectra of solar-like oscillations, which are excited and intrinsically damped by turbulence in the outermost layers of the convective envelopes. In this review we discuss the current state of the field, with a particular emphasis on recent advances provided by the Kepler and CoRoT space missions and the wider significance to astronomy of the results from asteroseismology, such as stellar populations studies and exoplanet studies.Comment: The following paper will appear in the 2013 volume of Annual Reviews of Astronomy and Astrophysics (88 pages, 7 figures; references updated; further corrections to typos during galley-proof review

    The more the merrier: grid based modelling of Kepler dwarfs with 5-dimensional stellar grids

    Get PDF
    We present preliminary results of our grid based modelling (GBM) of the dwarf/subgiant sample of stars observed with Kepler including global asteroseismic parameters. GBM analysis in this work is based on a large grid of stellar models that is characterized by five independent parameters: model mass and age, initial metallicity (\zini), initial helium (\yini), and mixing length parameter (αmlt\alpha_{mlt}). Using this grid relaxes assumptions used in all previous GBM work where the initial composition is determined by a single parameter and that αmlt\alpha_{mlt} is fixed to a solar-calibrated value. The new grid allows us to study, for example, the impact of different galactic chemical enrichment models on the determination of stellar parameters such as mass radius and age. Also, it allows to include new results from stellar atmosphere models on αmlt\alpha_{mlt} in the GBM analysis in a simple manner. Alternatively, it can be tested if global asteroseismology is a useful tool to constraint our ignorance on quantities such as \yini and αmlt\alpha_{mlt}. Initial findings show that mass determination is robust with respect to freedom in the latter quantities, with a 4.4\% maximum deviation for extreme assumptions regarding prior information on \yini-\zini relations and αmlt\alpha_{mlt}. On the other hand, tests carried out so far seem to indicate that global seismology does not have much power to constrain \yini-\zini relations of αmlt\alpha_{mlt} values without resourcing to additional information.Comment: To appear in the Proceedings of the joint TASC2/KASC9 workshop - SPACEINN & HELAS8 conference. 4 page

    A new method to detect solar-like oscillations at very low S/N using statistical significance testing

    Full text link
    We introduce a new method to detect solar-like oscillations in frequency power spectra of stellar observations, under conditions of very low signal to noise. The Moving-Windowed-Power-Search, or MWPS, searches the power spectrum for signatures of excess power, over and above slowly varying (in frequency) background contributions from stellar granulation and shot or instrumental noise. We adopt a false-alarm approach (Chaplin et al. 2011) to ascertain whether flagged excess power, which is consistent with the excess expected from solar-like oscillations, is hard to explain by chance alone (and hence a candidate detection). We apply the method to solar photometry data, whose quality was systematically degraded to test the performance of the MWPS at low signal-to-noise ratios. We also compare the performance of the MWPS against the frequently applied power-spectrum-of-power-spectrum (PSxPS) detection method. The MWPS is found to outperform the PSxPS method.Comment: 10 pages, 7 figures, accepted for publication in MNRAS, Added reference

    Reliability of P mode event classification using contemporaneous BiSON and GOLF observations

    Full text link
    We carried out a comparison of the signals seen in contemporaneous BiSON and GOLF data sets. Both instruments perform Doppler shift velocity measurements in integrated sunlight, although BiSON perform measurements from the two wings of potassium absorption line and GOLF from one wing of the NaD1 line. Discrepancies between the two datasets have been observed. We show,in fact, that the relative power depends on the wing in which GOLF data observes. During the blue wing period, the relative power is much higher than in BiSON datasets, while a good agreement has been observed during the red period.Comment: 7 pages, HELAS II: Helioseismology, Asteroseismology, and MHD Connections, conference proceedin

    Solar cycle variations of large frequency separations of acoustic modes: Implications for asteroseismology

    Full text link
    We have studied solar cycle changes in the large frequency separations that can be observed in Birmingham Solar Oscillations Network (BiSON) data. The large frequency separation is often one of the first outputs from asteroseismic studies because it can help constrain stellar properties like mass and radius. We have used three methods for estimating the large separations: use of individual p-mode frequencies, computation of the autocorrelation of frequency-power spectra, and computation of the power spectrum of the power spectrum. The values of the large separations obtained by the different methods are offset from each other and have differing sensitivities to the realization noise. A simple model was used to predict solar cycle variations in the large separations, indicating that the variations are due to the well-known solar cycle changes to mode frequency. However, this model is only valid over a restricted frequency range. We discuss the implications of these results for asteroseismology.Comment: 9 pages, 11 figures, accepted for publication in MNRAS, references updated, corrections following proof

    BiSON data preparation: A correction for differential extinction and the weighted averaging of contemporaneous data

    Get PDF
    The Birmingham Solar Oscillations Network (BiSON) has provided high-quality high-cadence observations from as far back in time as 1978. These data must be calibrated from the raw observations into radial velocity and the quality of the calibration has a large impact on the signal-to-noise ratio of the final time series. The aim of this work is to maximise the potential science that can be performed with the BiSON data set by optimising the calibration procedure. To achieve better levels of signal-to-noise ratio we perform two key steps in the calibration process: we attempt a correction for terrestrial atmospheric differential extinction; and the resulting improvement in the calibration allows us to perform weighted averaging of contemporaneous data from different BiSON stations. The improvements listed produce significant improvement in the signal-to-noise ratio of the BiSON frequency-power spectrum across all frequency ranges. The reduction of noise in the power spectrum will allow future work to provide greater constraint on changes in the oscillation spectrum with solar activity. In addition, the analysis of the low-frequency region suggests we have achieved a noise level that may allow us to improve estimates of the upper limit of g-mode amplitudes.Comment: Accepted for publication in MNRAS; 10 pages, 7 figure
    • …
    corecore