290 research outputs found

    Modeling the emergence of phenotypic heterogeneity in vascularized tumors

    Get PDF
    We present a mathematical study of the emergence of phenotypic heterogeneity in vascularized tumors. Our study is based on formal asymptotic analysis and numerical simulations of a system of nonlocal parabolic equations that describes the phenotypic evolution of tumor cells and their nonlinear dynamic interactions with the oxygen, which is released from the intratumoral vascular network. Numerical simulations are carried out both in the case of arbitrary distributions of intratumor blood vessels and in the case where the intratumoral vascular network is reconstructed from clinical images obtained using dynamic optical coherence tomography. The results obtained support a more in-depth theoretical understanding of the eco-evolutionary process which underpins the emergence of phenotypic heterogeneity in vascularized tumors. In particular, our results offer a theoretical basis for empirical evidence indicating that the phenotypic properties of cancer cells in vascularized tumors vary with the distance from the blood vessels, and establish a relation between the degree of tumor tissue vascularization and the level of intratumor phenotypic heterogeneity

    Evolutionary Dynamics in Vascularised Tumours under Chemotherapy: Mathematical Modelling, Asymptotic Analysis and Numerical Simulations

    Get PDF
    We consider a mathematical model for the evolutionary dynamics of tumour cells in vascularised tumours under chemotherapy. The model comprises a system of coupled partial integro-differential equations for the phenotypic distribution of tumour cells, the concentration of oxygen and the concentration of a chemotherapeutic agent. In order to disentangle the impact of different evolutionary parameters on the emergence of intra-tumour phenotypic heterogeneity and the development of resistance to chemotherapy, we construct explicit solutions to the equation for the phenotypic distribution of tumour cells and provide a detailed quantitative characterisation of the long-time asymptotic behaviour of such solutions. Analytical results are integrated with numerical simulations of a calibrated version of the model based on biologically consistent parameter values. The results obtained provide a theoretical explanation for the observation that the phenotypic properties of tumour cells in vascularised tumours vary with the distance from the blood vessels. Moreover, we demonstrate that lower oxygen levels may correlate with higher levels of phenotypic variability, which suggests that the presence of hypoxic regions supports intra-tumour phenotypic heterogeneity. Finally, the results of our analysis put on a rigorous mathematical basis the idea, previously suggested by formal asymptotic results and numerical simulations, that hypoxia favours the selection for chemoresistant phenotypic variants prior to treatment. Consequently, this facilitates the development of resistance following chemotherapy

    A novel 3D atomistic-continuum cancer invasion model : in silico simulations of an in vitro organotypic invasion assay

    Get PDF
    Copyright Ā© 2021 Elsevier Ltd. All rights reserved.We develop a three-dimensional genuinely hybrid atomistic-continuum model that describes the invasive growth dynamics of individual cancer cells in tissue. The framework explicitly accounts for phenotypic variation by distinguishing between cancer cells of an epithelial-like and a mesenchymal-like phenotype. It also describes mutations between these cell phenotypes in the form of epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET). The proposed model consists of a hybrid system of partial and stochastic differential equations that describe the evolution of epithelial-like and mesenchymal-like cancer cells, respectively, under the consideration of matrix-degrading enzyme concentrations and the extracellular matrix density. With the help of inverse parameter estimation and a sensitivity analysis, this three-dimensional model is then calibrated to an in vitro organotypic invasion assay experiment of oral squamous cell carcinoma cells.PostprintPeer reviewe

    The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity

    Get PDF
    We present here a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of abiotic components of the tumour microenvironment in mediating phenotypic selection of cancer cells. Numerical simulations are performed both on the 3D geometry of an in silico multicellular tumour spheroid and on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. The results obtained show that inhomogeneities in the spatial distribution of oxygen, currently observed in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. This process fosters the emergence of stable phenotypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic therapy prior to treatment. Our theoretical results demonstrate the importance of integrating spatial data with ecological principles when evaluating the therapeutic response of solid tumours to cytotoxic therapy

    Optical triangulations of curved spaces

    Get PDF
    Not only do curved spaces fascinate scientists and non-scientists, but they are also at the heart of general relativity and modern theories of quantum gravity. Optical systems can provide models for the wave and quantum behavior of curved spaces. Here we show how to construct optical systems that simulate triangulations of 3D curved spaces, for example, the curved 3D surface of a 4D hypersphere. Our work offers a new approach to the optical simulation of curved spaces, and has the potential to lead to new ways of thinking about physics in curved spaces and simulating otherwise inaccessible phenomena in non-Euclidean geometries

    A Mathematical Framework for Modelling the Metastatic Spread of Cancer

    Get PDF
    Cancer is a complex disease that starts with mutations of key genes in one cell or a small group of cells at a primary site in the body. If these cancer cells continue to grow successfully and, at some later stage, invade the surrounding tissue and acquire a vascular network, they can spread to distant secondary sites in the body. This process, known as metastatic spread, is responsible for around 90% of deaths from cancer and is one of the so-called hallmarks of cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit mannerā€”a multigrid, hybrid, individual-based approach. This framework accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular matrix. Using computational simulations, we demonstrate that our model captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of these clusters and single cells both via active mechanisms mediated by matrix-degrading enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single cancer cells in the vasculature with the associated risk of cell death and disaggregation of clusters; extravasation of clusters and single cells; and metastatic growth at distant secondary sites in the body. By faithfully reproducing experimental results, our simulations support the evidence-based hypothesis that the membrane-bound MT1-MMP is the main driver of invasive spread rather than diffusible MDEs such as MMP-2

    Quantifying ERK activity in response to inhibition of the BRAFV600E-MEK-ERK cascade using mathematical modelling

    Get PDF
    Funding: UK Medical Research Council (Grant Number(s): MR/R017506/1).Background Simultaneous inhibition of multiple components of the BRAF-MEK-ERK cascade (vertical inhibition) has become a standard of care for treating BRAF-mutant melanoma. However, the molecular mechanism of how vertical inhibition synergistically suppresses intracellular ERK activity, and consequently cell proliferation, are yet to be fully elucidated. Methods We develop a mechanistic mathematical model that describes how the mutant BRAF inhibitor, dabrafenib, and the MEK inhibitor, trametinib, affect BRAFV600E-MEK-ERK signalling. The model is based on a system of chemical reactions that describes cascade signalling dynamics. Using mass action kinetics, the chemical reactions are re-expressed as ordinary differential equations that are parameterised by in vitro data and solved numerically to obtain the temporal evolution of cascade component concentrations. Results The model provides a quantitative method to compute how dabrafenib and trametinib can be used in combination to synergistically inhibit ERK activity in BRAFV600E-mutant melanoma cells. The model elucidates molecular mechanisms of vertical inhibition of the BRAFV600E-MEK-ERK cascade and delineates how elevated BRAF concentrations generate drug resistance to dabrafenib and trametinib. The computational simulations further suggest that elevated ATP levels could be a factor in drug resistance to dabrafenib. Conclusions The model can be used to systematically motivate which dabrafenibā€“trametinib dose combinations, for treating BRAFV600E-mutated melanoma, warrant experimental investigation.Publisher PDFPeer reviewe

    Secondary school pupils' preferences for different types of structured grouping practices

    Get PDF
    The aim of this paper is to explore pupilsā€™ preferences for particular types of grouping practices an area neglected in earlier research focusing on the personal and social outcomes of ability grouping. The sample comprised over 5,000 year 9 pupils (aged 13-14 years) in 45 mixed secondary comprehensive schools in England. The schools represented three levels of ability grouping in the lower school (years 7 to 9). Pupils responded to a questionnaire which explored the types of grouping that they preferred and the reasons for their choices. The majority of pupils preferred setting, although this was mediated by their set placement, type of school, socio-economic status and gender. The key reason given for this preference was that it enabled work to be matched to learning needs. The paper considers whether there are other ways of achieving this avoiding the negative social and personal outcomes of setting for some pupils

    Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    Get PDF
    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth
    • ā€¦
    corecore