7,178 research outputs found

    Interaction-induced first order correlation between spatially-separated 1D dipolar fermions

    Full text link
    We calculate the ground-state properties of fermionic dipolar atoms or molecules in a one-dimensional double-tube potential by using the Luttinger liquid theory and the density matrix renormalization-group calculation. When the external field is applied near a magic angle with respect to the double-tube plane, the long-ranged dipolar interaction can generate a spontaneous correlation between fermions in different tubes, even when the bare intertube tunneling rate is negligibly small. Such interaction-induced correlation strongly enhances the contrast of the interference fringes and therefore can be easily observed in the standard time-of-flight experiment.Comment: Same as the published versio

    The Photonic Band theory and the negative refraction experiment of metallic helix metamaterials

    Full text link
    We develop a theory to compute and interpret the photonic band structure of a periodic array of metallic helices for the first time. Interesting features of band structure include the ingenuous longitudinal and circularly polarized eigenmodes, the wide polarization gap [Science 325, 1513 (2009)], and the helical symmetry guarantees the existence of negative group velocity bands at both sides of the polarization gap and band crossings pinned at the zone boundary with fixed frequencies. A direct proof of negative refraction via a chiral route [Science 306, 1353 (2004)] is achieved for the first time by measuring Gooshanchen shift through a slab of three dimensional bona fide helix metamaterial

    Gojiberry Breeding: Current Status and Future Prospects

    Get PDF
    Goji, gojiberry, or wolfberry is the fruit of Lycium barbarum L., L. chinense Mill., or L. ruthenicum Murr. in the family Solanaceae Juss. The fruit is bright orange-red or black and is edible with a sweet and tangy flavor. Gojiberry is rich in polysaccharides, flavonoids, carotenoids, betaine, kukoamine A, sitosterol, and other compounds which have antioxidant, anti-inflammatory, and anti-neoplastic properties and have been used for the treatment of various blood circulation disorders and diabetes. Recently, there is an increased demand for high-quality gojiberry and its products because they are considered a superfruit. China is the main producer and supplier of gojiberry in the world. Thus far, limited information is available about genetic resources, breeding activities, and major cultivars of gojiberry. This chapter is intended to review the current knowledge on gojiberry germplasm resources and their relationships as well as to describe gojiberry breeding activities. Future prospects on gojiberry cultivar development are also discussed

    Neutrino Masses and A TeV Scale Seesaw Mechanism

    Full text link
    A simple extension of the Standard Model providing TeV scale seesaw mechanism is presented. Beside the Standard Model particles and right-handed Majorana neutrinos, the model contains a singly charged scalar, an extra Higgs doublet and three vector like singly charged fermions. In our model, Dirac neutrino mass matrix raises only at the loop level. Small but non-zero Majorana neutrino masses come from integrating out heavy Majorana neutrinos, which can be at the TeV scale. The phenomenologies of the model are investigated, including scalar mass spectrum, neutrino masses and mixings, lepton flavor violations, heavy neutrino magnetic moments as well as possible collider signatures of the model at the LHC.Comment: 13 pages, 4 figures. references adde

    Generalization of Friedberg-Lee Symmetry

    Get PDF
    We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the FL symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via see-saw mechanism. If the right-handed neutrinos transform non-trivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale see-saw mechanism. Second, we present two models with the SO(3)×U(1)SO(3)\times U(1) global flavour symmetry in the lepton sector. After the flavour symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via see-saw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix after the SO(3)×U(1)SO(3)\times U(1) flavour symmetry breaking.Comment: 16 pages, no figure, version published in PR

    Excitonic Phases from Weyl Semi-Metals

    Full text link
    Systems with strong spin-orbit coupling, which competes with other interactions and energy scales, offer a fertile playground to explore new correlated phases of matter. Weyl semimetals are an example where the phenomenon leads to a low energy effective theory in terms of massless linearly dispersing fermions in three dimensions. In the absence of interactions chirality is a conserved quantum number, protecting the semi-metallic physics against perturbations that are translationally invariant. In this letter we show that the interplay between interaction and topology yields a novel chiral excitonic insulator. The state is characterized by a complex vectorial order parameter leading to a gapping out of the Weyl nodes. A striking feature is that it is ferromagnetic, with the phase of the order parameter determining the direction of the induced magnetic moment.Comment: 5 pages, 4 sets of figure

    The Electric Dipole Moment and CP Violation in B→Xsl+l−B \to X_s l^+ l^- in SUGRA Models with Nonuniversal Gaugino Masses

    Get PDF
    The constraints of electric dipole moments (EDMs) of electron and neutron on the parameter space in supergravity (SUGRA) models with nonuniversal gaugino masses are analyzed. It is shown that with a light sparticle spectrum, the sufficient cancellations in the calculation of EDMs can happen for all phases being order of one in the small tanβ\beta case and all phases but ϕμ\phi_{\mu} (∣ϕμ∣<∼π/6|\phi_{\mu}| <\sim \pi/6) order of one in the large tanβ\beta case. This is in contrast to the case of mSUGRA in which in the parameter space where cancellations among various SUSY contributions to EDMs happen ∣ϕμ∣|\phi_{\mu}| must be less than π/10\pi/10 for small tanβtan\beta and O(10−2){\cal{O}}(10^{-2}) for large tanβtan\beta. Direct CP asymmetries and the T-odd polarization of lepton in B→Xsl+l−B\to X_s l^+l^- are investigated in the models. In the large tanβ\beta case, ACP2A_{CP}^2 and PNP_N for l=μ\mu (τ\tau) can be enhanced by about a factor of ten (ten) and ten (three) respectively compared to those of mSUGRA.Comment: 12 pages, latex, 4 figures, a few change

    Intrabeam scattering analysis of measurements at KEK's ATF damping ring

    Get PDF
    We derive a simple relation for estimating the relative emittance growth in x and y due to intrabeam scattering (IBS) in electron storage rings. We show that IBS calculations for the ATF damping ring, when using the formalism of Bjorken-Mtingwa, a modified formalism of Piwinski (where eta squared divided by beta has been replaced by the dispersion invariant), or a simple high-energy approximate formula all give results that agree well. Comparing theory, including the effect of potential well bunch lengthening, with a complete set of ATF steady-state beam size vs. current measurements we find reasonably good agreement for energy spread and horizontal emittance. The measured vertical emittance, however, is larger than theory in both offset (zero current emittance) and slope (emittance change with current). The slope error indicates measurement error and/or additional current-dependent physics at the ATF; the offset error, that the assumed Coulomb log is correct to within a factor of 1.75.Comment: 17 pages, 6 figures, .bbl fil

    Femtosecond laser treatment enhances DNA transfection efficiency in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene therapy with plasmid DNA is emerging as a promising strategy for the treatment of many diseases. One of the major obstacles to such therapy is the poor transfection efficiency of DNA <it>in vivo</it>.</p> <p>Methods</p> <p>In this report, we employed a very low power, near-infrared femtosecond laser technique to enhance the transfection efficiency of intradermally and intratumorally administered DNA plasmid.</p> <p>Results</p> <p>We found that femtosecond laser treatment can significantly enhance the delivery of DNA into the skin and into established tumors in mice. In addition, we found that both laser power density as well as duration of laser treatment are critical parameters for augmenting DNA transfection efficiency. The femtosecond laser technique employs a relatively unfocused laser beam that maximizes the transfected area, minimizes damage to tissue and simplifies its implementation.</p> <p>Conclusion</p> <p>This femtosecond new laser technology represents a safe and innovative technology for enhancing DNA gene transfer in vivo.</p

    Eddington-Limited Accretion in z~2 WISE-selected Hot, Dust-Obscured Galaxies

    Full text link
    Hot, Dust-Obscured Galaxies, or "Hot DOGs", are a rare, dusty, hyperluminous galaxy population discovered by the WISE mission. Predominantly at redshifts 2-3, they include the most luminous known galaxies in the universe. Their high luminosities likely come from accretion onto highly obscured super massive black holes (SMBHs). We have conducted a pilot survey to measure the SMBH masses of five z~2 Hot DOGs via broad H_alpha emission lines, using Keck/MOSFIRE and Gemini/FLAMINGOS-2. We detect broad H_alpha emission in all five Hot DOGs. We find substantial corresponding SMBH masses for these Hot DOGs (~ 10^{9} M_sun), and their derived Eddington ratios are close to unity. These z~2 Hot DOGs are the most luminous AGNs at given BH masses, suggesting they are accreting at the maximum rates for their BHs. A similar property is found for known z~6 quasars. Our results are consistent with scenarios in which Hot DOGs represent a transitional, high-accretion phase between obscured and unobscured quasars. Hot DOGs may mark a special evolutionary stage before the red quasar and optical quasar phases, and they may be present at other cosmic epochs.Comment: 15 pages, 9 figures. Accepted by Ap
    • …
    corecore