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Abstract

We study the possible origin of Friedberg-Lee symmetry. First, we propose
the generalized Friedberg-Lee symmetry in the potential by including the scalar
fields in the field transformations, which can be broken down to the FL symmetry
spontaneously. We show that the generalized Friedberg-Lee symmetry allows a
typical form of Yukawa couplings, and the realistic neutrino masses and mixings can
be generated via see-saw mechanism. If the right-handed neutrinos transform non-
trivially under the generalized Friedberg-Lee symmetry, we can have the testable
TeV scale see-saw mechanism. Second, we present two models with the SO(3)×U(1)
global flavour symmetry in the lepton sector. After the flavour symmetry breaking,
we can obtain the charged lepton masses, and explain the neutrino masses and
mixings via see-saw mechanism. Interestingly, the complete neutrino mass matrices
are similar to those of the above models with generalized Friedberg-Lee symmetry.
So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix
after the SO(3)× U(1) flavour symmetry breaking.
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1 Introduction

Recent developments in neutrino physics [1, 2, 3, 4, 5, 6] have stimulated many interesting
new ideas [7, 8, 9, 10]. One beautiful approach towards understanding neutrino masses
and mixings was presented by Friedberg and Lee [10, 11, 12]. They showed that there
may be a hidden symmetry in the neutrino mass matrix with tri-bimaximal mixings, i.e.,
the invariance under the translation in the space of Grassmann number

νe,µ,τ → νe,µ,τ + θ. (1)

The symmetry was later used to explain the quark masses and mixings [11]. Instead of a
universal translation for all fermions, they introduced different coefficients in translation
of different flavors of quarks

qi → qi + ξiθ. (2)

And this symmetry implies that one family of the Standard Model (SM) fermions is
massless. Explicit symmetry breaking terms are introduced to reproduce the masses for
the light SM fermions. Researches along this approach have been performed by several
groups [13, 14].

On the other hand, it is generally acknowledged that the see-saw mechanism [15, 16,
17, 18, 19] is a powerful method to understand the tiny masses of the active neutrinos.
See-saw mechanism needs a symmetry to guarantee the masslessness of the neutrinos at
leading order. The masses of light neutrinos are generated after symmetry breaking. In
this respect it is natural to ask what kind symmetry can implement the see-saw mechanism
in such a way that the Friedberg-Lee (FL) symmetry is the residual symmetry hidden in
the neutrino mass matrix.

In this article, we first generalize the FL symmetry in a simple way by including the
scalar fields in the left-handed neutrino field transformations. The generalized Friedberg-
Lee (gFL) symmetry naturally incorporates the FL symmetry. And the FL symmetry of
Eq. (1) or Eq. (2) is obtained after the larger gFL symmetry breaking. The masslessness
of three light neutrinos is a direct consequence of the gFL symmetry. After the gFL
symmetry is broken down to FL symmetry, the light neutrinos get masses via see-saw
mechanism, and their masses and mixings are intimated related to the residual FL sym-
metry. We show that the observed neutrino masses and mixings can be reproduced via
see-saw mechanism. Also, if the transformations of the right-handed neutrinos under the
gFL symetry is similar to those of the left-handed neutrinos, the testable TeV scale see-
saw mechanism can be realized. Moreover, we briefly discuss how to embed the models
with gFL symmetry into the extensions of the SM. Second, we propose two models with
the SO(3) × U(1) global flavour symmetry in the lepton sector. After the flavour sym-
metry breaking, the charged lepton masses can be obtained, and the neutrino masses and
mixings can be generated via see-saw mechanism . Interestingly, the complete neutrino

2



mass matrices for the left-handed and right-handed neutrinos are similar to those of the
above models with gFL symetry. So the FL symmetry is the residual symmetry in the
neutrino mass matrix after the SO(3)× U(1) flavour symmetry breaking.

The content of this article is organized as follows. In Section 2 we propose the gFL
symmetry and study the models with gFL symmetry. And in Section 3, we consider the
models with SO(3)× U(1) flavour symmetry in the lepton sector. Our conclusions and
discussions are in Section 4.

2 Generalized Friedberg-Lee Symmetry

We consider two models with the generalization of FL symmetry. One model has usual
see-saw mechanism where only the left-handed neutrinos transform non-trivially under
the gFL symmetry, and the other model has the testable TeV scale see-saw mechanism
in which both the left-handed and right-handed neutrinos transform non-trivially under
the gFL symmetry.

2.1 Usual See-Saw Mechanism

We consider three families of the left-handed neutrinos νLi, right-handed neutrinos νc
Ri

and three SM singlet scalar fields φi where i = 1, 2, 3. We introduce the generalized
Friedberg-Lee symmetry by including scalar fields in the field transformations of νLi. We
introduce the following gFL symmetry transformation

νLi → νLi + φi θ , νc
Ri → νc

Ri , φi → φi , (3)

where θ is a Grassmann number†. We require that the neutrino mass terms and Yukawa
terms be invariant under this symmetry transformation.

The FL symmetry is obtained after the gFL symmetry breaks spontaneously. This can
be achieved by assuming the potential of φi triggers the spontaneous symmetry breaking.
We assume φi have a potential as follows

−∆L = ξ (
3∑

i=1

|φi|2 − v2)2 , (4)

where ξ > 0. Then, φi get the vacuum expectation values (VEVs) at the minimum of the
potential

< φi >= vi , (5)

†This gFL symmetry is introduced for neutrinos after electroweak breaking. One may consider that θ
carries an isospin number. Extension to doublet is discussed in section 2.4
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where v2 =
∑

3

i=1
|vi|2. The induced transformation is as follows

νLi → νLi + vi θ, νc
Ri → νc

Ri . (6)

Because the coefficients vi in above equation are space-time independent, we obtain the
FL symmetry as a residual symmetry.

The mass term and Yukawa terms invariant under the gFL transformation are

−∆L =
1

2
(m0)ij ν

cT
Ri iσ2ν

c
Rj + λijk νcT

Ri iσ2 νLj φk +
1

2
ηijk νcT

Ri iσ2 νc
Rj φk

+
1

2
η′ijk νcT

Ri iσ2 νc
Rj φ

†
k + h.c. , (7)

where λijk, ηijk and η′ijk are Yukawa couplings, and νT means the transpose of ν. Also,
we have to impose

λijk = −λikj , (8)

(m0)ij = (m0)ji , ηijk = ηjik , η′ijk = η′jik . (9)

The first, the third and the fourth terms in Eq. (7) are obviously invariant under the gFL
transformation in Eq. (3). Eq. (8) is required to make the second term invariant under
the gFL transformation. Using Eq. (8) the second term transforms to

λijk νcT
Ri iσ2 νLjφk + λijk νcT

Ri iσ2 θ φj φk

= λijk νcT
Ri iσ2 νLjφk , (10)

So it is invariant under the gFL symmetry. However, the other terms, e.g., νT
Liiσ2 νLj and

νT
Li iσ2 νLjφk, etc, are not invariant under the gFL transformation and are killed by the
gFL symmetry.

We see that the mass term νT
Liiσ2 νLj is killed by the gFL symmetry defined in Eq.

(3). If gFL symmetry is not broken to the FL symmetry neutrinos νLi won’t be able to
get masses. In this sense the masslessness of three νLi is a direct consequence of the gFL
symmetry. Neutrinos νLi get see-saw type masses after φi get vevs and gFL symmetry in
Eq. (3) is broken to the residual FL symmetry in Eq. (6). The generation of the see-saw
masses for νLi is shown in the following.

After the gFL symmetry is broken down to the FL symmetry, we obtain the following
neutrino mass terms

−∆L =
1

2
(mR)ij ν

cT
Ri iσ2ν

c
Rj + Λij ν

cT
Ri iσ2 νLj + h.c. , (11)
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where

(mR)ij = (m0)ij +
∑

k

ηijkvk +
∑

k

η′ijkv
∗
k . (12)

Λij =
∑

k

λijk vk . (13)

It is obvious that Eq. (11) is invariant under the residual FL symmetry transformation
in Eq. (6). And we can write the neutrino mass matrix in the basis (νL, ν

c
R)

T as follows

M =

(
03×3 , ΛT

Λ , mR

)
, (14)

where Λ and mR are 3 × 3 matrices, and their matrix elements are Λij and (mR)ij,
respectively.

Assuming the mass scale of Λ is much lower than that of mR we get the see-saw mass
matrix for the light neutrinos

mν = −ΛT (m−1

R ) Λ . (15)

Thus, using the gFL symmetry we have implemented see-saw mechanism. It is clear
that the gFL symmetry protects the masslessness of neutrinos νL. Right-handed neutrinos
νc
R are allowed to have masses and are heavy. Only one typical form of the neutrino Dirac
Yukawa couplings is allowed by the gFL symmetry. This type of the Yukawa couplings
introduces the mixings of νL and νc

R. After the gFL symmetry is spontaneously broken
down to the FL symmetry we get a see-saw type mass matrix for (νL, ν

c
R)

T and the see-saw
mass matrix for the light neutrinos, which are shown in Eqs. (14) and (15), respectively.

2.2 Neutrino Masses and Mixings

In this subsection we give examples which can reproduce the realistic neutrino masses
and mixings. For simplicity we assume vi are real and Λ and mR are real matrices. For
illustration we will try to obtain the following tri-bimaximal neutrino mixing matrix [20,
21, 22]

U =




√
2

3

√
1

3
0

−
√

1

6

√
1

3

√
1

2√
1

6
−
√

1

3

√
1

2


 , (16)

which has θ13 = 0, θ23 = π/4 and tan2 θ12 = 0.5. More realistic textures can be done by
following the discussions in this subsection.
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A direct consequence of the residual FL symmetry in Eq. (6) is that one light neutrino
is massless. This can be seen by noting that under the transformation νLi → νLi + viθ
the see-saw mass term of the light neutrinos is transformed to (after rearrangement)

1

2
(mν)ijν

T
Liiσ2νLj + h.c. →

→ 1

2
(mν)ij[ν

T
Liiσ2νLj + 2vjν

T
Liiσ2θ + vivjθ

T iσ2θ] + h.c. (17)

The invariance under the FL symmetry transformation says that the second term in the
bracket of the r.h.s. of Eq. (17) gives zero. Hence we obtain

mν




v1
v2
v3



 = 0. (18)

So neutrinos νLi have one eigenstate with zero mass. The eigenvector is (v1, v2, v3)
T . ‡

Eq. (18) can also be obtained by using Eqs. (13), (15) and (8) directly.
We shall present two examples. The first example has inverted hierarchy. For simplic-

ity, we assume that mR is a unit matrix, i.e., mR = ms1. And we choose

(v1, v2, v2)
T =

v√
2
(0, 1, 1)T . (19)

Using Eq. (19) we get

mν = − v2

2ms




F2, Fλ, −Fλ

Fλ, λ2, −λ2

−Fλ, −λ2, λ2


 , (20)

where

F2 =
∑

i

(λi12 + λi13)
2 , Fλ =

∑

i

λi23(λi12 + λi13) , λ2 =
∑

i

λ2

i23 . (21)

We find that mν is diagonalized by U

UT mν U = − v2

2ms

diag{F2 − Fλ, F2 + 2Fλ, 0} , (22)

provided that the following condition is satisfied

F2 + Fλ = 2λ2 . (23)

‡A difference between the gFL symmetry and the FL symmetry is that the coefficients φi in the
transformation law of the gFL symmetry (hence the coefficients in the eigenvector) can take arbitrary
values, instead of fixed constants vi in the FL transformation. So gFL symmetry makes three neutrinos
massless and the FL symmetry only guarantees one neutrino massless.
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And we get

∆m2

21
= 3Fλ(2F2 + Fλ)

v4

4m2
s

, ∆m2

31
= −(F2 − Fλ)

2
v4

4m2
s

. (24)

The realistic neutrino mass square differences can be obtained since we have enough
independent parameters to fit two ∆m2.

The second example has normal hierarchy, we take Λ anti-symmetric and mR diagonal

mR = diag{mr1, mr2, mr3} . (25)

We choose

(v1, v2, v3)
T =

v√
6
(2,−1, 1)T . (26)

Using λijk = λǫijk we get

Λ =
v√
6




0 λ λ
−λ 0 2λ
−λ −2λ 0



 . (27)

And we find

mν = −λ2v2

6




1

mr2

+ 1

mr3

, 2

mr3

, − 2

mr2

2

mr3

, 1

mr1

+ 4

mr3

, 1

mr1

− 2

mr2

, 1

mr1

, 1

mr1

+ 4

mr2


 . (28)

If the condition

mr2 = mr3 (29)

is satisfied, we find

UT mν U = −λ2v2

3
diag{0, 3

mr2

,
1

mr1

+
2

mr2

} . (30)

Hence we get

∆m2

21
=

λ4v4

m2

r2

, ∆m2

31
=

λ4v4

9
(

1

mr1

+
2

mr2

)2. (31)

Using the hierarchy in neutrino mass ∆m2

31
≈ 25∆m2

21
we find

mr2 ≈ 13mr1. (32)
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2.3 Testable TeV Scale See-Saw Mechanism

In recent years there have been some interests in the TeV scale see-saw mechanism [23, 24].
The mechanism suggests that the mixings of the left-handed and right-handed neutrinos
are independent of the hierarchy in the Dirac type and Majorana type masses. This makes
the see-saw mechanism testable at the future colliders or in rare decay processes. In this
subsection we show that we can also realize the testable TeV scale see-saw mechanism via
the generalized Friedberg-Lee symmetry.

Instead of Eq. (3) we introduce the following gFL symmetry transformation under
which the right-handed neutrinos transform non-trivially as well

νLi → νLi +
1√

1 + |αi|2
φi θ , (33)

νc
Ri → νc

Ri +
αi√

1 + |αi|2
φi θ , (34)

φi → φi , (35)

where αi (i = 1, 2, 3) are complex numbers.
We introduce neutrinos ν⊥ and ν⊤ in an orthogonal basis

ν⊥i =
1√

1 + |αi|2
(νLi + α∗

i νc
Ri), (36)

ν⊤i =
1√

1 + |αi|2
(−αi νLi + νc

Ri) . (37)

It is easy to see that under Eqs. (33) and (34) we have

ν⊥i → ν⊥i + φi θ, ν⊤i → ν⊤i . (38)

Thus, in the new basis the Eq. (3) is reproduced. And then the discussions on the see-saw
mechanism and the neutrino masses and mixings are similar to those in the subsections
2.1 and 2.2. The only difference with the previous case is that the mixings between the
left-handed and right-handed neutrinos are no longer suppressed by the mass hierarchy
in the see-saw type mass matrix in Eq. (14). Denoting the neutrino mass eigenstates as
(ν, νH)

T we can find that

(
νL
νc
R

)
≈

(
A0, −A†

1

A1, A0

)(
U, 0
0, UH

)(
ν
νH

)
(39)

=

(
A0 U, −A†

1
UH

A1 U, A0UH

)(
ν
νH

)
,

8



where U is the mixing matrix of the light neutrinos ν, UH is the mixing matrix of heavy
neutrinos νH , and

A0 = diag{ 1√
1 + |α1|2

,
1√

1 + |α2|2
,

1√
1 + |α3|2

} , (40)

A1 = diag{ α1√
1 + |α1|2

,
α2√

1 + |α2|2
,

α3√
1 + |α3|2

} . (41)

We find that the mixings of the left-handed and right-handed neutrinos are determined
by αi which is independent of the mass hierarchy between the Dirac type and Majorana
type masses. A1 determine the strength of unitarity violation of the mixings of light
neutrinos [25]. This kind scenario may be possibly tested at the future colliders [26] and
neutrino oscillation experiments [27].

2.4 Embedding into the Extensions of the SM

We can embed the above models into the extensions of the SM. Let us denote the SM
lepton doublets as Li, and the SM Higgs field as H . Also, we introduce three SM singlet
scalar fields φi. By the way, the following discussions can be easily generated to the
supersymmetric Standard Models by changing

H → Hu , H̃ → Hd , (42)

where H̃ = iσ2H
∗, and Hu and Hd are one pair of the Higgs doublets in the supersym-

metric Standard Models.

(A) For the usual see-saw mechanism, we introduce the following gFL symmetry

Li → Li + φi χ , νc
Ri → νc

Ri , φi → φi , H → H , (43)

where χ is an SU(2)L doublet and has two components of Grassmann constant. And the
relevant neutrino Lagrangian is

−∆L =
1

2
(m0)ij ν

cT
Ri iσ2ν

c
Rj + λijkνRiLj

φk

M∗

H +
1

2
ηijk νcT

Ri iσ2 νc
Rj φk

+
1

2
η′ijk νcT

Ri iσ2 νc
Rj φ

†
k +H.C. , (44)

where λijk = −λikj , and (m0)ij , ηijk and η′ijk are symmetric for i and j, and M∗ is the
cutoff scale of the gFL symmetry. Because the Lagrangian in Eq. (44) is similar to that
in Eq. (7), we can embed the model with the usual see-saw mechanism into the extension
of the SM.
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As a remark, the most naive approach is that we introduce three Higgs doublets Hi,
and define the following gFL symmetry

Li → Li + H̃i θ , νc
Ri → νc

Ri , Hi → Hi , (45)

where H̃i = iσ2H
∗
i . However, the neutrino Dirac Yukawa couplings νRiLjHk are not in-

variant under the above gFL symmetry. And then we can not explain the neutrino masses
and mixings via see-saw mechanism. In short, this approach does not work.

(B) For the testable TeV scale see-saw mechanism, we have to embed the three right-
handed neutrinos into three fermionic doublets L′

i. To cancel the anomaly, we introduce

three fermionic doublets L̃′
i which are the Hermitian conjugate of L′

i. And we introduce
the gFL symmetry transformation as follows

Li → Li +
1√

1 + |αi|2
φi χ , (46)

L′
i → L′

i +
αi√

1 + |αi|2
φi χ , (47)

φi → φi , H → H , L̃′
i → L̃′

i . (48)

And we define

L⊥i =
1√

1 + |αi|2
(Li + α∗

i L′
i), (49)

L⊤i =
1√

1 + |αi|2
(−αi Li + L′

i) . (50)

It is easy to see that under the above gFL symmetry, we have

L⊥i → L⊥i + φi χ, L⊤i → L⊤i . (51)

And then we obtain the major relevant neutrino Lagrangian

−∆L =
1

MI

(
λν
ijklL⊥iL⊥j

φk

M∗

φl

M∗

H2 + yνijkL⊤iL⊥j

φk

M∗

H2 + λijL̃
′
iL̃

′
jH̃H̃

)

+MijL⊤iL̃
′
j + yLijkL⊤iL̃

′
jφl +H.C. , (52)

where MI is an intermediate scale and the Yukawa couplings λν
ijkl satisfy λν

ijkl = −λν
kjil =

−λν
ilkj or λ

ν
ijkl = −λν

ljki = −λν
ikjl, and the Yukawa coupling yνijk is anti-symmetric for j and

k. Interestingly, the neutrino mass matrix proposed by Friedberg and Lee can be generated
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by the first term in Eq. (52). Even if this term is zero, i.e., λν
ijkl = 0, the observed neutrino

masses and mixings can be generated by the double see-saw mechanim [28, 29]. Here, we
emphasize that we neglect the other high-dimensional operators that are not important
in the discussions of the neutrino masses and mixings.

In addition, the first three terms in Eq. (52) are non-renormalizable and can be ob-
tained by the see-saw mechanism. For example, if we introduce three SM singlet fermions
Ni, the first three terms can be obtained due to the following Lagrangian via the see-saw
mechanism

−∆L =
1

2
(MN )ijN

c

iNj + λliN lL⊤iH + ηljkN lL⊥j

φk

M∗

H + λliNlL̃
′
iH̃ +H.C. , (53)

where (MN)ij is symmetric, and ηljk = −ηlkj . MI is around the mass scales of Ni.

3 SO(3)×U(1) Flavour Symmetry in the Lepton Sec-

tor

To explain the SM fermion masses and mixings, we usually use the Froggatt-Nielsen
mechanism [30] by introducing the global flavour symmetry. Thus, the FL symmetry
could also be a residual symmetry after the flavour symmetry breaking. In this section,
we consider the SO(3)× U(1) flavour symmtry in the lepton sector.

Let us explain the convention in details. We denote the SM Higgs doublet as H , the
left-handed lepton doublets as Li, and right-handed charged leptons as Ei. To break
the SO(3)× U(1) flavour symmetry we also introduce three Higgs doublets Hi, and nine
SM singlet scalar field Φ, Φi and Φij . We assume that the Li, Ei, Hi and Φi form
the fundamental representation of SO(3), and Φij form the symmetric representation of
SO(3). We shall present two concrete models in the following subsections: In the Model I,
νRi are singlets under SO(3), while in Model II, νRi form the fundamental representation
of SO(3) and we do not need the Φi fields.

3.1 FL symmetry with see-saw mechanism

Before we study the SO(3)× U(1) flavour Symmetry, let us consider the FL model with
see-saw mechanism. We consider the FL symmetry as follows

Li → Li + ξi χ , νRi → νRi , H → H , (54)

where we obtain the original FL symmetry by choosing ξ1 = ξ2 = ξ3. And the neutrino
Lagrangian, which is invariant under above FL symmetry, is

−∆L =
1

2
(m′

0
)ijν

c
RiνRj + yijkνRi(ξkLj − ξjLk)H . (55)

11



Following the usual procedure [15, 16, 17, 18, 19], we realize the see-saw mechanism with
FL symmetry in the light neutrino mass matrix. Therefore, in order to generalize the FL
symmetry, we need to construct the models that can reproduce the above Lagrangian in
Eq. (55) after the generalized symmetry breaking. As an example to explain the main
idea, we introduce three SM Higgs doublets and consider ξiH as Hi. Then the above
neutrino Lagrangian becomes

−∆L =
1

2
(m′

0
)ijν

c
RiνRj +

1

2
(m′

0
)ijν

c
RiνRj + yijkνRi(LjHk −HjLk) . (56)

Therefore, we can obtain the neutrino mass matrix with FL symmetry if the neutrino Dirac
Yukawa couplings yijk are anti-symmetric for the lepton doublet indices j and Higgs field
indices k, i.e., yijk = −yikj.

3.2 Model I

We assume that under the U(1) symmetry, νRi has charge 0, Li has charge 1, Ei has
charge −1/2, H has charge 1/2, Hi has charge 2, Φi has charge −3, and Φ and Φij have
charges −1. The SO(3)× U(1) invariant Lagrangian is

−∆L =
1

2
(m′

0
)ijν

c
RiνRj +

1

MPl

(
yνijklνRiLjHkΦl + λEEiLiH̃Φ

+yEijEiLjH̃Φij

)
+H.C. , (57)

where the Yukawa couplings yνijkl are anti-symmetric for their indices j, k, and l due to
the SO(3) invariance. For simplicity, we assume that the SM Higgs field H has VEV
close to 174 GeV, while the Higgs fields Hi have small VEVs, for example, a few GeVs.
In addition, we assume that Φ, Φi and Φij have VEVs around the grand unification scale
2.4 × 1016 or higher so that the dimension-5 operators can generate the masses for the
charged leptons and neutrinos. And it is not difficult to show that we do have enough
degrees of freedom to explain the charged lepton masses, and the neutrino masses and
mixings.

After the SO(3)×U(1) flavour symmetry breaking, we obtain that the neutrino mass
matrix for the left-handed and right-handed neutrinos from the Lagrangian in Eq. (57)
is the same as that from the Lagrangian in Eq. (7) by choosing the following relations

(m0)ij + ηijk〈φk〉+ η′ijk〈φ∗
k〉 = (m′

0
)ij , λijk〈φi〉 =

1

MPl

yνijkl〈Hk〉〈Φl〉 . (58)

Similar to the discussions in the subsection 2.2, we can explain the realistic neutrino
masses and mxings. Interestingly, the SO(3) × U(1) flavour symmetry is broken down
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to the FL symmetry. In other words, the FL symmetry is the residual symmetry in the
neutrino mass matrix from the flavour symmetry breaking.

Moreover, the FL symmetry can be broken only by the dimension-7 or higher operators.
And the dimension-7 operators that break the FL symmetry are

−∆L =
1

M3

Pl

νRiLjHk(Φ
3δjk + Φ2Φjk + ΦjlΦlmΦmk + ΦjkΦlmΦlm) +H.C. , (59)

where for simplicity we neglect the Yukawa couplings. Thus, the FL symmetry is a very
good approximate symmetry in the neutrino mass matrix.

By the way, the VEVs of Φ, Φi and Φij break the U(1) symmetry down to the Z2

symmetry. Under this Z2 symmetry, Ei andH are odd while the other fields are even. And
then, this Z2 symmetry forbids the Dirac Yukawa couplings between H and neutrinos.
Otherwise, the discussions will become very complicated because the VEV of H is much
larger than those of Hi while the VEVs of Φ, Φi, and Φij are close to the Planck scale.
Also, this U(1) symmetry will not affect the quark Yukawa couplings if we assign the U(1)
charges 1/2 and −1/2 to the right-handed up-type and down-type quarks, respectively.

3.3 Model II

We assume that under the U(1) symmetry, νRi has charge −1, Li has charge 1, Ei has
charge −3/2, H has charge 1/2, Hi has charge −2, and Φ and Φij have charges −2. The
SO(3)× U(1) invariant Lagrangian is

−∆L =
1

2
λNνc

RiνRiΦ
† +

1

2
yNij ν

c
RiνRjΦ

†
ij + yνijkνRiLjHk

+
1

MPl

(
λEEiLiH̃Φ + yEijEiLjH̃Φij

)
+ h.c. , (60)

where the Yukawa coupling yνijk is anti-symmetric for their indices i, j and k. Similar to
the above subsection, we have enough degrees of freedom to explain the charged lepton
masses.

After the SO(3)×U(1) flavour symmetry breaking, we obtain that the neutrino mass
matrix for the left-handed and right-handed neutrinos from the Lagrangian in Eq. (60) is
a special case of that from the Lagrangian in Eq. (7) by choosing the following relations

(m0)ij + ηijk〈φk〉+ η′ijk〈φ∗
k〉 = λN〈Φ†〉δij + yNij 〈Φ†

ij〉 , λijk〈φi〉 = yνijk〈Hk〉 . (61)

The point is that the Yukawa coupling yνijk is anti-symmetric for i, j and k while λijk is
only anti-symmetric for j and k. Similar to the second example in the subsection 2.2,
we can explain the observed neutrino masses and mixings. And the FL symmetry is the
residual symmetry from the SO(3) × U(1) flavour symmetry breaking as well. Unlike
the Model I, it is very difficult to break the FL symmetry via the higher dimensional
operators, so the FL symmetry may be a symmetry in the neutrino mass matrix.
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4 Conclusions and Discussions

In summary, we study the possible origin of the FL symmetry. First, we generalize the FL
symmetry to the gFL symmetry by including the scalar fields in the field transformations.
And the FL symmetry is the residual symmetry after the larger gFL symmetry breaking.
A direct consequence of the gFL symmetry is the masslessness of three light neutrinos,
which obtain masses via see-saw mechanism after the gFL symmetry breaking. We also
show that the observed neutrino masses and mixings can be generated. Also, if the
transformations of the right-handed neutrinos under the gFL symmetry are similar to
those of the left-handed neutrinos, we can have the testable TeV scale see-saw mechanism.
Moreover, the models with gFL symmetry can be embedded into the extensions of the
SM. Second, we propose two models with the SO(3) × U(1) global flavour symmetry
in the lepton sector. After the flavour symmetry breaking, we can obtain the charged
lepton masses, and explain the neutrino masses and mixings via see-saw mechanism. In
particular, the complete neutrino mass matrices are similar to those of the above models
with gFL symetry. So, the SO(3) × U(1) flavour symmetry is broken down to the FL
symmetry which is the residual symmetry in the neutrino mass matrix.
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