52,001 research outputs found
Multiquark Hadrons
A number of candidate multiquark hadrons, i.e., particle resonances with
substructures that are more complex than the quark-antiquark mesons and
three-quark baryons that are prescribed in the textbooks, have recently been
observed. In this talk I present: some recent preliminary BESIII results on the
near-threshold behavior of sigma(e+e- --> Lambda Lambda-bar) that may or may
not be related to multiquark mesons in the light- and strange-quark sectors;
results from Belle and LHCb on the electrically charged, charmoniumlike
Z(4430)^+ --> pi^+ psi ' resonance that necessarily has a four-quark
substructure; and the recent LHCb discovery of the P_c(4380) and P_c(4450)
hidden-charm resonances seen as a complex structure in the J/psi p invariant
mass distribution for Lambda_b --> K^-J/psi p decays and necessarily have a
five-quark substructure and are, therefore, prominent candidates for pentaquark
baryons.Comment: 12 pages, 9 figures, summary of a talk presented at the 12th
Conference on Hypernuclear and Strange Particle Physics (HYP2015), September
7-12, 2015 Sendai, JAPAN. To appear in the JPS Conference proceeding
Avalanche to streamer transition in particle simulations
The avalanche to streamer transition is studied and illustrated in a particle
model. The results are similar to those of fluid models. However, when
super-particles are introduced, numerical artefacts become visible. This
underscores the need of models that are hybrid in space.Comment: 2 pages, 1 figur
Reply to Comment on "Chiral suppression of scalar glueball decay"
Reply to the comment of Chao, He, and Ma
The meson annihilation to leptons and inclusive light hadrons
The annihilation of the meson to leptons and inclusive light hadrons is
analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find
that the decay mode, which escapes from the helicity suppression, contributes a
sizable fraction width. According to the analysis, the branching ratio due to
the contribution from the color-singlet component of the meson can be of
order (10^{-2}). We also estimate the contributions from the color-octet
components. With the velocity scaling rule of NRQCD, we find that the
color-octet contributions are sizable too, especially, in certain phase space
of the annihilation they are greater than (or comparative to) the color-singlet
component. A few observables relevant to the spectrum of charged lepton are
suggested, that may be used as measurements on the color-octet and
color-singlet components in the future experiments. A typical long
distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.
Decays of the Meson to a -Wave Charmonium State or
The semileptonic decays,
, and the two-body
nonleptonic decays, , (here and
denote and respectively, and
indicates a meson) were computed. All of the form factors appearing in the
relevant weak-current matrix elements with as its initial state and a
-wave charmonium state as its final state for the decays were precisely
formulated in terms of two independent overlapping-integrations of the
wave-functions of and the -wave charmonium and with proper kinematics
factors being `accompanied'. We found that the decays are quite sizable, so
they may be accessible in Run-II at Tevatron and in the foreseen future at LHC,
particularly, when BTeV and LHCB, the special detectors for B-physics, are
borne in mind. In addition, we also pointed out that the decays may potentially be used as a fresh window to look for the
charmonium state, and the cascade decays,
() with one of the radiative decays
being followed accordingly, may affect
the observations of meson through the decays () substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation
and adding reference
Electron Refrigeration in the Tunneling Approach
The qualities of electron refrigeration by means of tunnel junctions between
superconducting and normal--metal electrodes are studied theoretically. A
suitable approximation of the basic expression for the heat current across
those tunnel junctions allows the investigation of several features of the
device such as its optimal bias voltage, its maximal heat current, its optimal
working point, and the maximally gained temperature reduction. Fortunately, the
obtained results can be compared with those of a recent experiment.Comment: 4 pages, 4 Postscript figures, uses eps
Peak Effect in Superconductors: Melting of Larkin Domains
Motivated by the recent observations of the peak effect in high- YBCO
superconductors, we reexamine the origin of this unusual phenomenon. We show
that the mechanism based on the -dependence (nonlocality) of the
vortex-lattice tilt modulus cannot account for the essential
feature of the peak effect. We propose a scenario in which the peak effect is
related to the melting of Larkin domains. In our model, the rise of critical
current with increasing temperature is a result of a crossover from the Larkin
pinning length to the length scale set by thermally excited free dislocations.Comment: 13 pages, 2 figures, REVTE
Thermodynamic properties of compounds of biochemical interest in aqueous solution. A survey of thermodynamic properties of the compounds of the elements CHNOPS Progress report
Thermodynamic properties of compounds of biochemical interest in aqueous solutio
Age structure landscapes emerge from the equilibrium between aging and rejuvenation in bacterial populations.
The physiological asymmetry between daughters of a mother bacterium is produced by the inheritance of either old poles, carrying non-genetic damage, or newly synthesized poles. However, as bacteria display long-term growth stability leading to physiological immortality, there is controversy on whether asymmetry corresponds to aging. Here we show that deterministic age structure landscapes emerge from physiologically immortal bacterial lineages. Through single-cell microscopy and microfluidic techniques, we demonstrate that aging and rejuvenating bacterial lineages reach two distinct states of growth equilibria. These equilibria display stabilizing properties, which we quantified according to the compensatory trajectories of continuous lineages throughout generations. Finally, we show that the physiological asymmetry between aging and rejuvenating lineages produces complex age structure landscapes, resulting in a deterministic phenotypic heterogeneity that is neither an artifact of starvation nor a product of extrinsic damage. These findings indicate that physiological immortality and cellular aging can both be manifested in single celled organisms
Point estimate method for voltage unbalance evaluation in residential distribution networks with high penetration of small wind turbines
Voltage unbalance (VU) in residential distribution networks (RDNs) is mainly caused by load unbalance in three phases, resulting from network configuration and load-variations. The increasing penetration of distributed generation devices, such as small wind turbines (SWTs), and their uneven distribution over the three phases have introduced difficulties in evaluating possible VU. This paper aims to provide a three-phase probabilistic power flow method, point estimate method to evaluate the VU. This method, considering the randomness of load switching in customers’ homes and time-variation in wind speed, is shown to be capable of providing a global picture of a network’s VU degree so that it can be used for fast evaluation. Applying the 2m + 1 scheme of the proposed method to a generic UK distribution network shows that a balanced SWT penetration over three phases reduces the VU of a RDN. Greater unbalance in SWT penetration results in higher voltage unbalance factor (VUF), and cause VUF in excess of the UK statutory limit of 1.3%
- …
