3,794 research outputs found

    Age-related differences in adaptation during childhood: The influences of muscular power production and segmental energy flow caused by muscles

    Get PDF
    Acquisition of skillfulness is not only characterized by a task-appropriate application of muscular forces but also by the ability to adapt performance to changing task demands. Previous research suggests that there is a different developmental schedule for adaptation at the kinematic compared to the neuro-muscular level. The purpose of this study was to determine how age-related differences in neuro-muscular organization affect the mechanical construction of pedaling at different levels of the task. By quantifying the flow of segmental energy caused by muscles, we determined the muscular synergies that construct the movement outcome across movement speeds. Younger children (5-7 years; n = 11), older children (8-10 years; n = 8), and adults (22-31 years; n = 8) rode a stationary ergometer at five discrete cadences (60, 75, 90, 105, and 120 rpm) at 10% of their individually predicted peak power output. Using a forward dynamics simulation, we determined the muscular contributions to crank power, as well as muscular power delivered to the crank directly and indirectly (through energy absorption and transfer) during the downstroke and the upstroke of the crank cycle. We found significant age × cadence interactions for (1) peak muscular power at the hip joint [Wilks' Lambda = 0.441, F(8,42) = 2.65, p = 0.019] indicating that at high movement speeds children produced less peak power at the hip than adults, (2) muscular power delivered to the crank during the downstroke and the upstroke of the crank cycle [Wilks' Lambda = 0.399, F(8,42) = 3.07, p = 0.009] indicating that children delivered a greater proportion of the power to the crank during the upstroke when compared to adults, (3) hip power contribution to limb power [Wilks' Lambda = 0.454, F(8,42) = 2.54, p = 0.023] indicating a cadence-dependence of age-related differences in the muscular synergy between hip extensors and plantarflexors. The results demonstrate that in spite of a successful performance, children construct the task of pedaling differently when compared to adults, especially when they are pushed to their performance limits. The weaker synergy between hip extensors and plantarflexors suggests that a lack of inter-muscular coordination, rather than muscular power production per se, is a factor that limits children's performance ranges

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Numerical visualization and optimization on the core penetration in multi-cavity co-injection molding with a bifurcation runner structure

    Get PDF
    [[abstract]]Co-Injection Molding and multi-cavity molding are common processes for plastic products manufacturing. These two systems are sometimes combined and applied in the manufacture of bifurcation-structure products. In the previous literature results, the dynamic behavior of the core penetration in co-injection multi-cavity molding with a bifurcation structure is quite complicated and the behavior is sensitive to injection flow rates, different materials, and other process conditions. However, how these influential factors truly affect the core penetration behavior and the detailed mechanism of core penetration behavior has not yet been fully understood. In this study, we focused on studying the multi-cavity co-injection system with a bifurcation runner structure. The results showed that when the skin-to-core ratio is fixed (say 72/28), the melt flow behavior of a co-injection system, utilizing the same material for both skin and core, is very similar to that of a single shot injection molding. Specifically, the non-symmetrical bifurcation runner structure will influence the flow behavior greatly and cause the core distribution imbalance between different cavities. Due to the geometric nature of the bifurcation runner design, this core distribution imbalance problem will still persist even if we modify the melt temperature, mold temperature, or even change the plastic material. Furthermore, when the skin-to-core ratio is fixed (say 72/28), the changes of the flow rate have very little effect on the core penetration result in the final molded product; the final molded product will still have a core distribution imbalance issue. However, we observed that when the flow rate is increased, the core material will occupy more volume space in the upstream portion of the runner and the core penetration distance will be reduced in the flow direction downstream. This feature is very useful to further manipulate the skin-core interface in a multi-cavity system. Moreover, regarding how to improve a poor inter-cavity balance of core material distribution, using a suitable adjustment of the skin-to-core ratio will be greatly helpful. However, the core break-through defect can be a common problem in co-injection molding when an unsuitable skin-to-core ratio is used. To prevent the core break-through defect, increasing the flow rate properly can be one of the good options that we can use. Hence, we concluded that a suitable adjustment of the skin-to-core ratio and a proper flow rate control can be used to optimize the core material distribution in multi-cavity co-injection molding with a bifurcation runner structure. Lastly, in order to validate our inference and the effectiveness of our proposal to improve the inter-cavity imbalance and core break-through problem, a series of experimental studies were performed. And, all experimental results are in good agreement with those of our numerical predictions to further validate the feasibility of our proposed method to gain a better control of the core material distribution with a bifurcation runner structure in multi-cavity co-injection molding.[[notice]]補正完

    A Non-coding RNA of Insect HzNV-1 Virus Establishes Latent Viral Infection through MicroRNA

    Get PDF
    Heliothis zea nudivirus-1 (HzNV-1) is an insect virus previously known as Hz-1 baculovirus. One of its major early genes, hhi1, is responsible for the establishment of productive viral infection; another gene, pag1, which expresses a non-coding RNA, is the only viral transcript detectable during viral latency. Here we showed that this non-coding RNA was further processed into at least two distinct miRNAs, which targeted and degraded hhi1 transcript. This is a result strikingly similar to a recent report that herpes simplex virus produces tightly-regulated latent specific miRNAs to silence its own key early transcripts. Nevertheless, proof for the establishment of viral latency by miRNA is still lacking. We further showed that HzNV-1 latency could be directly induced by pag1-derived miRNAs in cells infected with a pag1-deleted, latency-deficient virus. This result suggests the existence of a novel mechanism, where miRNAs can be functional for the establishment of viral latency

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    Identification of the Midgut Microbiota of An. stephensi and An. maculipennis for Their Application as a Paratransgenic Tool against Malaria

    Get PDF
    The midgut microbiota associated with Anopheles stephensi and Anopheles maculipennis (Diptera: Culicidae) was investigated for development of a paratransgenesis-based approach to control malaria transmission in Eastern Mediterranean Region (EMR). Here, we present the results of a polymerase chain reaction (PCR) and biochemical-based approaches to identify the female adult and larvae mosquitoe microbiota of these two major malaria vectors, originated from South Eastern and North of Iran. Plating the mosquito midgut contents from lab-reared and field-collected Anopheles spp. was used for microbiota isolation. The Gram-negative and Gram-positive bacterial colonies were identified by Gram staining and specific mediums. Selected colonies were identified by differential biochemical tests and 16S rRNA gene sequence analysis. A number of 10 An. stephensi and 32 An. maculipennis adult mosquitoes and 15 An. stephensi and 7 An. maculipennis larvae were analyzed and 13 sequences of 16S rRNA gene bacterial species were retrieved, that were categorized in 3 classes and 8 families. The majority of the identified bacteria were belonged to the γ-proteobacteria class, including Pseudomonas sp. and Aeromonas sp. and the others were some closely related to those found in other vector mosquitoes, including Pantoea, Acinetobacter, Brevundimonas, Bacillus, Sphingomonas, Lysinibacillus and Rahnella. The 16S rRNA sequences in the current study aligned with the reference strains available in GenBank were used for construction of the phylogenetic tree that revealed the relatedness among the bacteria identified. The presented data strongly encourage further investigations, to verify the potential role of the detected bacteria for the malaria control in Iran and neighboring countries

    The first case report of dental floss pick-related injury presenting with massive hemoptysis: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A tracheobronchial foreign body is a rarely mentioned cause of massive hemoptysis. Although an aspirated toothpick is a well-known cause of traumatic injury to the respiratory tract, a similar device called a dental floss pick, which is much larger than a toothpick, has never been described as a tracheobronchial foreign body.</p> <p>Case presentation</p> <p>We report a case of massive hemoptysis in a 32-year-old man due to a dental floss pick in the left main bronchus. Flexible fiberoptic bronchoscopy was successful in removing the foreign body.</p> <p>Conclusion</p> <p>Tracheobronchial foreign body can be a medical emergency requiring immediate intervention and massive hemoptysis may be the presenting symptom. Flexible fiberoptic bronchoscopy is recommended as the first-line treatment modality for tracheobronchial foreign body removal. A dental floss pick may present as a tracheobronchial foreign body and can reside in the airway asymptomatically for many years.</p
    corecore