1,787 research outputs found

    Profiling time course expression of virus genes---an illustration of Bayesian inference under shape restrictions

    Get PDF
    There have been several studies of the genome-wide temporal transcriptional program of viruses, based on microarray experiments, which are generally useful in the construction of gene regulation network. It seems that biological interpretations in these studies are directly based on the normalized data and some crude statistics, which provide rough estimates of limited features of the profile and may incur biases. This paper introduces a hierarchical Bayesian shape restricted regression method for making inference on the time course expression of virus genes. Estimates of many salient features of the expression profile like onset time, inflection point, maximum value, time to maximum value, area under curve, etc. can be obtained immediately by this method. Applying this method to a baculovirus microarray time course expression data set, we indicate that many biological questions can be formulated quantitatively and we are able to offer insights into the baculovirus biology.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS258 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simple Models of the Protein Folding Problem

    Full text link
    The protein folding problem has attracted an increasing attention from physicists. The problem has a flavor of statistical mechanics, but possesses the most common feature of most biological problems -- the profound effects of evolution. I will give an introduction to the problem, and then focus on some recent work concerning the so-called ``designability principle''. The designability of a structure is measured by the number of sequences that have that structure as their unique ground state. Structures differ drastically in terms of their designability; highly designable structures emerge with a number of associated sequences much larger than the average. These highly designable structures 1) possess ``proteinlike'' secondary structures and motifs, 2) are thermodynamically more stable, and 3) fold faster than other structures. These results suggest that protein structures are selected in nature because they are readily designed and stable against mutations, and that such selection simultaneously leads to thermodynamic stability and foldability. According to this picture, a key to the protein folding problem is to understand the emergence and the properties of the highly designable structures.Comment: 21 pages, 14 figures. Invited talk at Dynamics Days Asian Pacific, Hong Kong, July 13-16, 1999. To appear in Physica

    Enhanced photo-excitation and angular-momentum imprint of gray excitons in WSe2_{2} monolayers by spin-orbit-coupled vector vortex beams

    Full text link
    A light beam can be spatially structured in the complex amplitude to possess orbital angular momentum (OAM), which introduces a new degree of freedom alongside the intrinsic spin angular momentum (SAM) associated with circular polarization. Moreover, super-imposing two twisted lights with distinct SAM and OAM produces a vector vortex beam (VVB) in non-separable states where not only complex amplitude but also polarization are spatially structured and entangled with each other. In addition to the non-separability, the SAM and OAM in a VVB are intrinsically coupled by the optical spin-orbit interaction and constitute the profound spin-orbit physics in photonics. In this work, we present a comprehensive theoretical investigation, implemented on the first-principles base, of the intriguing light-matter interaction between VVBs and WSe2_{2} monolayers (WSe2_{2}-MLs), one of the best-known and promising two-dimensional (2D) materials in optoelectronics dictated by excitons, encompassing bright exciton (BX) as well as various dark excitons (DXs). One of the key findings of our study is the substantial enhancement of the photo-excitation of gray excitons (GXs), a type of spin-forbidden dark exciton, in a WSe2_2-ML through the utilization of a twisted light that possesses a longitudinal field associated with the optical spin-orbit interaction. Our research demonstrates that a spin-orbit-coupled VVB surprisingly allows for the imprinting of the carried optical information onto gray excitons in 2D materials, which is robust against the decoherence mechanisms in materials. This observation suggests a promising method for deciphering the transferred angular momentum from structured lights to excitons

    Current and state of the art on the electrophysiologic characteristics and catheter ablation of arrhythmogenic right ventricular dysplasia/cardiomyopathy

    Get PDF
    AbstractArrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited genetic disease caused by defective desmosomal proteins, and it has typical histopathological features characterized by predominantly progressive fibro-fatty infiltration of the right ventricle. Clinical presentations of ARVD/C vary from syncope, progressive heart failure (HF), ventricular tachyarrhythmias, and sudden cardiac death (SCD). The 2010 modified Task Force criteria were established to facilitate the recognition and diagnosis of ARVD/C. An implantable cardiac defibrillator (ICD) remains to be the cornerstone in prevention of SCD in patients fulfilling the diagnosis of definite ARVD/C, especially among ARVD/C patients with syncope, hemodynamically unstable ventricular tachycardia (VT), ventricular fibrillation, and aborted SCD. Further risk stratification is clinically valuable in the management of patients with borderline or possible ARVD/C and mutation carriers of family members. However, given the entity of heterogeneous penetrance and non-uniform phenotypes, the standardization of clinical practice guidelines for at-risk individuals will be the next frontier to breakthrough.Antiarrhythmic drugs are prescribed frequently to patients experiencing frequent ventricular tachyarrhythmias and/or appropriate ICD shocks. Amiodarone is the recommended drug of choice. Radiofrequency catheter ablation (RFCA) has been demonstrated to effectively eliminate the drug-refractory VT in patients with ARVD/C. However, the efficacy and clinical prognosis of RFCA via endocardial approach alone was disappointing prior to the era of epicardial approach. In recent years, it has been proven that the integration of endocardial and epicardial ablation by targeting the critical isthmus or eliminating abnormal electrograms within the diseased substrates could yield higher acute success and lower recurrence of ventricular tachyarrhythmias during long-term follow-up. Heart transplantation is the final option for patients with extensive disease, biventricular HF with uncontrollable hemodynamic compromise, and refractory ventricular tachyarrhythmias despite aggressive medical and ablation therapies

    Anatomical features, fiber morphological, physical and mechanical properties of three years old new hybrid Paulownia: green Paulownia

    Get PDF
    Objective: Green Paulownia (hybridization of Paulownia elongata × Paulownia fotunei and tropical Paulownia spp.) is new hybrid claimed as one of the fast-growing woody plants with the high potential as a fiber material or lignocellulosic material. The material for this study originates from the area of Nanning in China. Methodology: Cell morphology and anatomical appearances were observed and evaluated under the image analysis system (Leica DMLS). Physical and mechanical properties were evaluated based on the American Society for Testing and Materials (ASTM) standards. Results: From the results, average value of the mean fiber length was 0.905 mm, mean fiber length 34.59 μm, lumen thickness 26.80 μm and cell wall thickness 3.89 μm. Fiber dimensions of green Paulownia are in the normal range for hardwoods. The physical and mechanical properties of 3 years old green Paulownia have similar properties than those 7-11 years old Paulownia published in China. Conclusion: The 3 years old green Paulownia timbers can be used as materials for furniture
    corecore