24,005 research outputs found
Theoretical analysis of Wolter/LSM X-ray telescope systems
A ray tracing analysis has been performed for the spectral slicing zoom X-ray telescope for configurations in which a convex layered synthetic microstructure (LSM) optic is placed in front of the prime focus or a concave LSM optic is placed behind the prime focus. The analysis has considered the geometrical shape of the LSM optic to be either a hyperboloid, sphere, ellipsoid or constant optical path aspheric element for two configurations of the glancing incidence X-ray telescope: the ATM Experimental S-056 Wolter I system and the Stanford/MSFC Wolter-Schwarzchild nested system. For the different systems the RMS blur circle radii, the point spread function (PSF), the full width half maximum (FWHM) of the PSF have been evaluated as a function of field angle and magnification of the secondary to determine resolution of the system. The effects of decentration and tilt of the selected LSM element on the performance of the system have been studied to determine mounting and alignment tolerances
Theoretical design and analysis of the layered synthetic microstructure optic for the dual path X-ray telescope
A ray tracing analysis was performed for several configurations for the inner channel of the dual path X-ray telescope, which is proposed to use the second mirror of the Stanford/MSFC Wolter-Schwarzchild telescope and a normal incident layered synthetic microstructure (LSM) mirror to form a secondary image near the front of the telescope. The LSM mirror shapes considered were spherical, ellipsoid, hyperboloid, and constant optical path length (OPL) aspheric. Only the constant OPL case gave good axial resolution. All cases had poor off axis resolution as judged by the RMS blur circle radius
Theoretical analysis of segmented Wolter/LSM X-ray telescope systems
The Segmented Wolter I/LSM X-ray Telescope, which consists of a Wolter I Telescope with a tilted, off-axis convex spherical Layered Synthetic Microstructure (LSM) optics placed near the primary focus to accommodate multiple off-axis detectors, has been analyzed. The Skylab ATM Experiment S056 Wolter I telescope and the Stanford/MSFC nested Wolter-Schwarzschild x-ray telescope have been considered as the primary optics. A ray trace analysis has been performed to calculate the RMS blur circle radius, point spread function (PSF), the meridional and sagittal line functions (LST), and the full width half maximum (PWHM) of the PSF to study the spatial resolution of the system. The effects on resolution of defocussing the image plane, tilting and decentrating of the multilayer (LSM) optics have also been investigated to give the mounting and alignment tolerances of the LSM optic. Comparison has been made between the performance of the segmented Wolter/LSM optical system and that of the Spectral Slicing X-ray Telescope (SSXRT) systems
A minimal two-band model for the superconducting Fe-pnictides
Following the discovery of the Fe-pnictide superconductors, LDA band
structure calculations showed that the dominant contributions to the spectral
weight near the Fermi energy came from the Fe 3d orbitals. The Fermi surface is
characterized by two hole surfaces around the point and two electron
surfaces around the M point of the 2 Fe/cell Brillouin zone. Here, we describe
a 2-band model that reproduces the topology of the LDA Fermi surface and
exhibits both ferromagnetic and spin density wave (SDW)
fluctuations. We argue that this minimal model contains the essential low
energy physics of these materials.Comment: 5 figures, 5 page
First measurements of the flux integral with the NIST-4 watt balance
In early 2014, construction of a new watt balance, named NIST-4, has started
at the National Institute of Standards and Technology (NIST). In a watt
balance, the gravitational force of an unknown mass is compensated by an
electromagnetic force produced by a coil in a magnet system. The
electromagnetic force depends on the current in the coil and the magnetic flux
integral. Most watt balances feature an additional calibration mode, referred
to as velocity mode, which allows one to measure the magnetic flux integral to
high precision. In this article we describe first measurements of the flux
integral in the new watt balance. We introduce measurement and data analysis
techniques to assess the quality of the measurements and the adverse effects of
vibrations on the instrument.Comment: 7 pages, 8 figures, accepted for publication in IEEE Trans. Instrum.
Meas. This Journal can be found online at
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=1
Decays of the Meson to a -Wave Charmonium State or
The semileptonic decays,
, and the two-body
nonleptonic decays, , (here and
denote and respectively, and
indicates a meson) were computed. All of the form factors appearing in the
relevant weak-current matrix elements with as its initial state and a
-wave charmonium state as its final state for the decays were precisely
formulated in terms of two independent overlapping-integrations of the
wave-functions of and the -wave charmonium and with proper kinematics
factors being `accompanied'. We found that the decays are quite sizable, so
they may be accessible in Run-II at Tevatron and in the foreseen future at LHC,
particularly, when BTeV and LHCB, the special detectors for B-physics, are
borne in mind. In addition, we also pointed out that the decays may potentially be used as a fresh window to look for the
charmonium state, and the cascade decays,
() with one of the radiative decays
being followed accordingly, may affect
the observations of meson through the decays () substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation
and adding reference
Amine-terminated nanoparticle films: pattern deposition by a simple nanostencilling technique and stability studies under X-ray irradiation
Exploring the surface chemistry of nanopatterned amine-terminated nanoparticle films.</p
- …