551 research outputs found

    Prevalence of genotypic HIV-1 drug resistance in Thailand, 2002

    Get PDF
    BACKGROUND: The prices of reverse transcriptase (RT) inhibitors in Thailand have been reduced since December 1, 2001. It is expected that reduction in the price of these inhibitors may influence the drug resistance mutation pattern of HIV-1 among infected people. This study reports the frequency of HIV-1 genetic mutation associated with drug resistance in antiretroviral-treated patients from Thailand. METHODS: Genotypic resistance testing was performed on samples collected in 2002 from 88 HIV-1 infected individuals. Automated DNA sequencing was used to genotype the HIV-1 polymerase gene isolated from patients' plasma. RESULTS: Resistance to protease inhibitors, nucleoside and non-nucleoside reverse transcriptase inhibitors were found in 10 (12%), 42 (48%) and 19 (21%) patients, respectively. The most common drug resistance mutations in the protease gene were at codon 82 (8%), 90 (7%) and 54 (6%), whereas resistant mutations at codon 215 (45%), 67 (40%), 41 (38%) and 184 (27%) were commonly found in the RT gene. This finding indicates that genotypic resistance to nucleoside reverse transcriptase inhibitors was prevalent in 2002. The frequency of resistant mutations corresponding to non-nucleoside reverse transcriptase inhibitors was three times higher-, while resistant mutation corresponding to protease inhibitors was two times lower than those frequencies determined in 2001. CONCLUSION: This study shows that the frequencies of RT inhibitor resistance mutations have been increased after the reduction in the price of RT inhibitors since December 2001. We believe that this was an important factor that influenced the mutation patterns of HIV-1 protease and RT genes in Thailand

    Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand

    Get PDF
    Xenorhabdus and Photorhabdus spp. are bacterial symbionts of entomopathogenic nematodes (EPNs). In this study, we isolated and characterized Xenorhabdus and Photorhabdus spp. from across Thailand together with their associated nematode symbionts, and characterized their phylogenetic diversity. EPNs were isolated from soil samples using a Galleria-baiting technique. Bacteria from EPNs were cultured and genotyped based on recA sequence. The nematodes were identified based on sequences of 28S rDNA and internal transcribed spacer regions. A total of 795 soil samples were collected from 159 sites in 13 provinces across Thailand. A total of 126 EPNs isolated from samples taken from 10 provinces were positive for Xenorhabdus (n = 69) or Photorhabdus spp. (n = 57). Phylogenetic analysis separated the 69 Xenorhabdus isolates into 4 groups. Groups 1, 2 and 3 consisting of 52, 13 and 1 isolates related to X. stockiae, and group 4 consisting of 3 isolates related to X. miraniensis. The EPN host for isolates related to X. stockiae was S. websteri, and for X. miraniensis was S. khoisanae. The Photorhabdus species were identified as P. luminescens (n = 56) and P. asymbiotica (n = 1). Phylogenenic analysis divided P. luminescens into five groups. Groups 1 and 2 consisted of 45 and 8 isolates defined as subspecies hainanensis and akhurstii, respectively. One isolate was related to hainanensis and akhurstii, two isolates were related to laumondii, and one isolate was the pathogenic species P. asymbiotica subsp. australis. H. indica was the major EPN host for Photorhabdus. This study reveals the genetic diversity of Xenorhabdus and Photorhabdus spp. and describes new associations between EPNs and their bacterial symbionts in Thailand

    Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments.

    Get PDF
    Burkholderia pseudomallei is a flagellated, gram-negative environmental bacterium that causes melioidosis, a severe infectious disease of humans and animals in tropical areas. We hypothesised that B. pseudomallei may undergo phenotypic adaptation in response to an increase in growth temperature. We analysed the growth curves of B. pseudomallei strain 153 cultured in Luria-Bertani broth at five different temperatures (25 °C-42 °C) and compared the proteomes of bacteria cultured at 37 °C and 42 °C. B. pseudomallei exhibited the highest growth rate at 37 °C with modest reductions at 30 °C, 40 °C and 42 °C but a more marked delay at 25 °C. Proteome analysis revealed 34 differentially expressed protein spots between bacterial cultures at 42 °C versus 37 °C. These were identified as chaperones (7 spots), metabolic enzymes (12 spots), antioxidants (10 spots), motility proteins (2 spots), structural proteins (2 spots) and hypothetical proteins (1 spot). Of the 22 down-regulated proteins at 42 °C, redundancy in motility and antioxidant proteins was observed. qRT-PCR confirmed decreased expression of fliC and katE. Experiments on three B. pseudomallei strains demonstrated that these had the highest motility, greatest resistance to H2O2 and greatest tolerance to salt stress at 37 °C. Our data suggest that temperature affects B. pseudomallei motility and resistance to stress

    Tetraspanins are involved in Burkholderia pseudomallei-induced cell-to-cell fusion of phagocytic and non-phagocytic cells

    Get PDF
    Tetraspanins are four-span transmembrane proteins of host cells that facilitate infections by many pathogens. Burkholderia pseudomallei is an intracellular bacterium and the causative agent of melioidosis, a severe disease in tropical regions. This study investigated the role of tetraspanins in B. pseudomallei infection. We used flow cytometry to determine tetraspanins CD9, CD63, and CD81 expression on A549 and J774A.1 cells. Their roles in B. pseudomallei infection were investigated in vitro using monoclonal antibodies (MAbs) and recombinant large extracellular loop (EC2) proteins to pretreat cells before infection. Knockout of CD9 and CD81 in cells was performed using CRISPR Cas9 to confirm the role of tetraspanins. Pretreatment of A549 cells with MAb against CD9 and CD9-EC2 significantly enhanced B. pseudomallei internalization, but MAb against CD81 and CD81-EC2 inhibited MNGC formation. Reduction of MNGC formation was consistently observed in J774.A1 cells pretreated with MAbs specific to CD9 and CD81 and with CD9-EC2 and CD81-EC2. Data from knockout experiments confirmed that CD9 enhanced bacterial internalization and that CD81 inhibited MNGC formation. Our data indicate that tetraspanins are host cellular factors that mediated internalization and membrane fusion during B. pseudomallei infection. Tetraspanins may be the potential therapeutic targets for melioidosis

    Parallelization of logic regression analysis on SNP-SNP interactions of a Crohn’s disease dataset model

    Get PDF
    SNP-SNP interactions have been recognized to be basically important for understanding genetic causes of complex disease traits. Logic regression is an effective methods for identifying SNP-SNP interactions associated with risk of complex disease. However, identifying SNP-SNP interactions are computationally challenging and may take hours, weeks and months to complete. Although parallel computing is a powerful method to accelerate computing time, it is arduous for users to apply this method to logic regression analyses of SNP-SNP interactions because it requires advanced programming skills to correctly partition and distribute data, control and monitor tasks across multi-core CPUs or several computers, and merge output files. In this paper, we present a novel R-library called SNPInt to automatically speed up analyses of SNP-SNP interactions of genome-wide association (GWA) studies using parallel computing without the advanced programming skills. The Crohn’s disease GWA studies dataset from the Wellcome Trust Case Control Consortium (WTCCC) that includes 4,680 individuals with 500,000 SNPs’ genotypes was analyzed using logic regression on a computer cluster to evaluate SNPInt performance. The results from SNPInt with any number of CPUs are the same as the results from non-parallel approach, and SNPInt library quite accelerated the logic regression analysis. For instance, with two hundred genes and twenty permutation rounds, the computing time was continuously decreased from 7.3 days to only 0.9 day when SNPInt applied eight CPUs. Executing analyses of SNP-SNP interactions using the SNPInt library is an effective way to boost performance, and simplify the parallelization of analyses of SNP-SNP interactions

    Effect of colony morphology variation of Burkholderia pseudomallei on intracellular survival and resistance to antimicrobial environments in human macrophages in vitro.

    Get PDF
    BACKGROUND: Primary diagnostic cultures from patients with melioidosis demonstrate variation in colony morphology of the causative organism, Burkholderia pseudomallei. Variable morphology is associated with changes in the expression of a range of putative virulence factors. This study investigated the effect of B. pseudomallei colony variation on survival in the human macrophage cell line U937 and under laboratory conditions simulating conditions within the macrophage milieu. Isogenic colony morphology types II and III were generated from 5 parental type I B. pseudomallei isolates using nutritional limitation. Survival of types II and III were compared with type I for all assays. RESULTS: Morphotype was associated with survival in the presence of H2O2 and antimicrobial peptide LL-37, but not with susceptibility to acid, acidified sodium nitrite, or resistance to lysozyme, lactoferrin, human neutrophil peptide-1 or human beta defensin-2. Incubation under anaerobic conditions was a strong driver for switching of type III to an alternative morphotype. Differences were noted in the survival and replication of the three types following uptake by human macrophages, but marked strain-to strain-variability was observed. Uptake of type III alone was associated with colony morphology switching. CONCLUSIONS: Morphotype is associated with phenotypes that alter the ability of B. pseudomallei to survive in adverse environmental conditions.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Burkholderia pseudomallei Is Genetically Diverse in Agricultural Land in Northeast Thailand

    Get PDF
    Burkholderia pseudomallei is the cause of melioidosis, a serious human infection most commonly diagnosed in southeast Asia and northern Australia. The organism lives in the soil in a specific geographical distribution and infection results from bacterial inoculation, inhalation or ingestion. The purpose of this study was to define the distribution and genetic diversity of B. pseudomallei in agricultural land where most human infections probably occur. We performed soil sampling and culture for the presence of B. pseudomallei in 100 equally spaced points within a rice paddy in northeast Thailand, and undertook genotyping of primary culture plate colonies from 11 sampling points. We identified 7 different genotypes, with relatively limited overlap between different sampling points. Two samples contained more than one B. pseudomallei genotype, in which a numerically dominant genotype coexisted with one or more additional genotypes present as a minority population. We conclude that genetic diversity and structuring of B. pseudomallei exists despite the effects of flooding and the physical and chemical processes associated with farming. These findings inform future efforts to define B. pseudomallei in the environment, and should be considered during the design stage of studies comparing B. pseudomallei isolated from the environment and from patients with invasive disease

    Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae.

    Get PDF
    BACKGROUND: Klebsiella pneumoniae is a gram-negative bacterial species capable of occupying a broad range of environmental and clinical habitats. Known as an opportunistic pathogen, it has recently become a major causative agent of clinical infections worldwide. Despite growing knowledge about the highly diverse population of K. pneumoniae, the evolution and clinical significance of environmental K. pneumoniae, as well as the relationship between clinical and environmental K. pneumoniae, are poorly defined. METHODS: We isolated and sequenced K. pneumoniae from in-patients in a single hospital in Thailand, as well as hospital sewage, and surrounding canals and farms within a 20-km radius. RESULTS: Phylogenetic analysis of 77 K. pneumoniae (48 clinical and 29 non-clinical isolates) demonstrated that the two groups were intermixed throughout the tree and in some cases resided in the same clade, suggesting recent divergence from a common ancestor. Phylogenetic comparison of the 77 Thai genomes with 286 K. pneumoniae from a global collection showed that Thai isolates were closely related to the clinical sub-population of the global collection, indicating that Thai clinical isolates belonged to globally circulating lineages. Dating of four Thai K. pneumoniae clades indicated that they emerged between 50 and 150 years ago. Despite their phylogenetic relatedness, virulence factors and β-lactamase resistance genes were more numerous in clinical than in environmental isolates. Our results indicate that clinical and environmental K. pneumoniae are closely related, but that hospitals may select for isolates with a more resistant and virulent genotype. CONCLUSIONS: These findings highlight the clinical relevance of environmental K. pneumoniae isolates
    corecore