22 research outputs found

    Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Get PDF
    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming

    Evaluating Alternative Ebullition Models for Predicting Peatland Methane Emission and Its Pathways via Data–Model Fusion

    Get PDF
    Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, we evaluated two model structures: (1) the ebullition bubble growth volume threshold approach (EBG) and (2) the modified ebullition concentration threshold approach (ECT) using CH4 flux and concentration data collected in a peatland in northern Minnesota, USA. When model parameters were constrained using observed CH4 fluxes, the CH4 emissions simulated by the EBG approach (RMSE = 0.53) had a better agreement with observations than the ECT approach (RMSE = 0.61). Further, the EBG approach simulated a smaller contribution from ebullition but more frequent ebullition events than the ECT approach. The EBG approach yielded greatly improved simulations of pore water CH4 concentrations, especially in the deep soil layers, compared to the ECT approach. When constraining the EBG model with both CH4 flux and concentration data in model–data fusion, uncertainty of the modeled CH4 concentration profiles was reduced by 78 % to 86 % in comparison to constraints based on CH4 flux data alone. The improved model capability was attributed to the well-constrained parameters regulating the CH4 production and emission pathways. Our results suggest that the EBG modeling approach better characterizes CH4 emission and underlying mechanisms. Moreover, to achieve the best model results both CH4 flux and concentration data are required to constrain model parameterization

    Evaluating Alternative Ebullition Models for Predicting Peatland Methane Emission and Its Pathways via Data–Model Fusion

    Get PDF
    Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, we evaluated two model structures: (1) the ebullition bubble growth volume threshold approach (EBG) and (2) the modified ebullition concentration threshold approach (ECT) using CH4 flux and concentration data collected in a peatland in northern Minnesota, USA. When model parameters were constrained using observed CH4 fluxes, the CH4 emissions simulated by the EBG approach (RMSE = 0.53) had a better agreement with observations than the ECT approach (RMSE = 0.61). Further, the EBG approach simulated a smaller contribution from ebullition but more frequent ebullition events than the ECT approach. The EBG approach yielded greatly improved simulations of pore water CH4 concentrations, especially in the deep soil layers, compared to the ECT approach. When constraining the EBG model with both CH4 flux and concentration data in model–data fusion, uncertainty of the modeled CH4 concentration profiles was reduced by 78 % to 86 % in comparison to constraints based on CH4 flux data alone. The improved model capability was attributed to the well-constrained parameters regulating the CH4 production and emission pathways. Our results suggest that the EBG modeling approach better characterizes CH4 emission and underlying mechanisms. Moreover, to achieve the best model results both CH4 flux and concentration data are required to constrain model parameterization

    Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion

    Full text link
    Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, we evaluated two model structures: (1) the ebullition bubble growth volume threshold approach (EBG) and (2) the modified ebullition concentration threshold approach (ECT) using CH4 flux and concentration data collected in a peatland in northern Minnesota, USA. When model parameters were constrained using observed CH4 fluxes, the CH4 emissions simulated by the EBG approach (RMSE = 0.53) had a better agreement with observations than the ECT approach (RMSE = 0.61). Further, the EBG approach simulated a smaller contribution from ebullition but more frequent ebullition events than the ECT approach. The EBG approach yielded greatly improved simulations of pore water CH4 concentrations, especially in the deep soil layers, compared to the ECT approach. When constraining the EBG model with both CH4 flux and concentration data in model–data fusion, uncertainty of the modeled CH4 concentration profiles was reduced by 78 % to 86 % in comparison to constraints based on CH4 flux data alone. The improved model capability was attributed to the well-constrained parameters regulating the CH4 production and emission pathways. Our results suggest that the EBG modeling approach better characterizes CH4 emission and underlying mechanisms. Moreover, to achieve the best model results both CH4 flux and concentration data are required to constrain model parameterization

    Hydrogenation of Organic Matter as a Terminal Electron Sink Sustains High CO2:CH4 Production Ratios During Anaerobic Decomposition

    Get PDF
    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 \u3e1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios

    The Utility of Stable and Radioisotopes in Fish Tissues as Biogeochemical Tracers of Marine Oil Spill Food Web Effects

    No full text
    Direct exposure to petroleum compounds was widely reported for a variety of taxa following the DWH. Evidence of exposure ranged from oiling of skin, shells, or feathers, depending on the taxa, to observation of ingested oil in small translucent, invertebrates, to biomarkers of petroleum compounds within an organism’s tissues, such as PAHs in the hepatopancreas of invertebrates or the liver of fishes, or metabolic products of PAH catabolism in the bile of various vertebrate taxa. Development of natural biogeochemical tracers to examine indirect effects, especially over long (months to years) time scales, can be much more problematic. In this chapter, we describe the utility of employing stable isotopes and radioisotopes to 1) examine whether food web effects can be inferred from shifts in stable isotope values measured in vertebrate taxa; 2) examine the assimilation and trophic transfer of petrocarbon in marine food webs; and, 3) serve as long-term biogeochemical tracers either of petrocarbon assimilation or trophic shifts that are indicative of food web effects of marine oil spills. Data and analyses are largely drawn from DWH-related studies but with broader implications to marine oil spills in general

    Mapping Isotopic and Dissolved Organic Matter Baselines in Waters and Sediments of the Gulf of Mexico

    No full text
    The Deepwater Horizon oil spill released petroleum hydrocarbons that were depleted in δ13C and Δ14C at depth into the Gulf of Mexico. Stable-carbon and radiocarbon isotopic values and high-resolution mass spectrometry were used to follow the distributions of this petroleum and to track its transformation into petrocarbon, a term used to describe crude oil or transformed crude oil following biodegradation, weathering, oxygenation, or loss of lighter components. The term petrocarbon includes oil- or methane-derived carbon assimilated or incorporated into microbial biomass or into the food web as well as degraded and undegraded petroleum constituents. Here we report (1) the increase in the relative abundance of oxygen-containing carbon compounds making up the dissolved organic matter (DOM) with increasing depth through the water column, indicating the biodegradation of DOM as it was transported to depth in the water column, (2) the finding of 14C depletion in DOM indicating petrocarbon inputs, and (3) the decrease and subsequent increase of 14C in the isotopic composition of sinking particles indicating the capture of petrocarbon in sediment traps. In addition, we discuss the 14C depletion of this material once it is sedimented to the seafloor and the implications for oil spill budgets of seafloor petrocarbon deposition

    Characterizing the Impact and Response of Deep Sea Benthic Foraminifera to the Deepwater Horizon Event in the Northeastern Gulf of Mexico

    Get PDF
    Sediment cores were collected from the Gulf of Mexico to assess the benthic foraminifera (BF) community structure changes in response to the Deepwater Horizon (DWH) event. Short-lived radioisotope geochronologies (210Pb and 234Th), organic geochemical toxicity assessments, and redox metal concentrations were determined to relate changes in sedimentation rate, toxicity levels, and redox conditions with BF abundance. Records from December 2010 document a community-wide decrease in abundance in the upper 10 mm relative to the down-core mean. There is also depletion in the δ13C and Δ14C records of BF calcite (relative to down-core values) that is synchronous with the timing of the community decline in the surface sediment. This suggests that petroleum hydrocarbons were incorporated into the BF tests. Preliminary mass balance calculations infer that 0.1-7% of the test calcite is composed of petroleum hydrocarbons. Integrating records of BF abundance with other sedimentary chemical records has shown to be effective in quantifying the benthic response and will be valuable in determining the long-term impacts of the DWH event on the benthic habitat on larger spatial scale

    Gas venting and subsurface charge in the Green Canyon area, Gulf of Mexico continental slope: Evidence of a deep bacterial methane source?

    No full text
    Questions as to the role of modern carbon in methanogenesis and the maximum depth of methane sources in the Gulf of Mexico continental slope remain unanswered. A research submersible was used to sample mixed bacterial and thermal gas (δ C of methane = -62.8‰, δD = -176‰) venting to the water column from the Gulf slope in Green Canyon (GC) 286. The Δ C value of the methane (-998‰) is consistent with fossil carbon. Another gas vent on GC 185 is 100% methane (δ C = -62.9‰, δD = -155‰) and may be from a bacterial source. The Δ C (-997‰) of this bacterial methane is also consistent with fossil carbon. Fossil bacterial methane and thermal hydrocarbons are present in Pliocene to Pleistocene reservoirs (≃3509-4184 m) of Genesis Field (GC 205, 161, 160). Oil in these reservoirs is biodegraded but gas is not, suggesting that gas charge to reservoirs continues presently at 3-4 km depth. Mixed thermal and bacterial methane may charge the deep reservoirs, and fossil methane from depth may ultimately vent on the sea floor at GC 286 and GC 185. Results of this study of Green Canyon suggest that bacterial methane in gas vents and in reservoirs is from deep fossil sources. © 2003 Elsevier Ltd. All rights reserved. 13 14 13 1
    corecore