27 research outputs found

    Cross-Lineage Influenza B and Heterologous Influenza A Antibody Responses in Vaccinated Mice: Immunologic Interactions and B/Yamagata Dominance

    Get PDF
    The annually reformulated trivalent inactivated influenza vaccine (TIV) includes both influenza A/subtypes (H3N2 and H1N1) but only one of two influenza B/lineages (Yamagata or Victoria). In a recent series of clinical trials to evaluate prime-boost response across influenza B/lineages, influenza-naïve infants and toddlers originally primed with two doses of 2008–09 B/Yamagata-containing TIV were assessed after two doses of B/Victoria-containing TIV administered in the subsequent 2009–10 and 2010–11 seasons. In these children, the Victoria-containing vaccines strongly recalled antibody to the initiating B/Yamagata antigen but induced only low B/Victoria antibody responses. To further evaluate this unexpected pattern of cross-lineage vaccine responses, we conducted additional immunogenicity assessment in mice. In the current study, mice were primed with two doses of 2008–09 Yamagata-containing TIV and subsequently boosted with two doses of 2010–11 Victoria-containing TIV (Group-Yam/Vic). With the same vaccines, we also assessed the reverse order of two-dose Victoria followed by two-dose Yamagata immunization (Group-Vic/Yam). The Group-Yam/Vic mice showed strong homologous responses to Yamagata antigen. However, as previously reported in children, subsequent doses of Victoria antigen substantially boosted Yamagata but induced only low antibody response to the immunizing Victoria component. The reverse order of Group-Vic/Yam mice also showed low homologous responses to Victoria but subsequent heterologous immunization with even a single dose of Yamagata antigen induced substantial boost response to both lineages. For influenza A/H3N2, homologous responses were comparably robust for the differing TIV variants and even a single follow-up dose of the heterologous strain, regardless of vaccine sequence, substantially boosted antibody to both strains. For H1N1, two doses of 2008–09 seasonal antigen significantly blunted response to two doses of the 2010–11 pandemic H1N1 antigen. Immunologic interactions between influenza viruses considered antigenically distant and in particular the cross-lineage influenza B and dominant Yamagata boost responses we have observed in both human and animal studies warrant further evaluation

    Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures

    Get PDF
    Influenza virus infections remain a major and recurrent public health burden. The intrinsic ever-evolving nature of this virus, the suboptimal efficacy of current influenza inactivated vaccines, as well as the emergence of resistance against a limited antiviral arsenal, highlight the critical need for novel therapeutic approaches. In this context, the aim of this study was to develop and validate an innovative strategy for drug repurposing as host-targeted inhibitors of influenza viruses and the rapid evaluation of the most promising candidates in Phase II clinical trials. We exploited in vivo global transcriptomic signatures of infection directly obtained from a patient cohort to determine a shortlist of already marketed drugs with newly identified, host-targeted inhibitory properties against influenza virus. The antiviral potential of selected repurposing candidates was further evaluated in vitro, in vivo, and ex vivo. Our strategy allowed the selection of a shortlist of 35 high potential candidates out of a rationalized computational screening of 1,309 FDA-approved bioactive molecules, 31 of which were validated for their significant in vitro antiviral activity. Our in vivo and ex vivo results highlight diltiazem, a calcium channel blocker currently used in the treatment of hypertension, as a promising option for the treatment of influenza infections. Additionally, transcriptomic signature analysis further revealed the so far undescribed capacity of diltiazem to modulate the expression of specific genes related to the host antiviral response and cholesterol metabolism. Finally, combination treatment with diltiazem and virus-targeted oseltamivir neuraminidase inhibitor further increased antiviral efficacy, prompting rapid authorization for the initiation of a Phase II clinical trial. This original, host-targeted, drug repurposing strategy constitutes an effective and highly reactive process for the rapid identification of novel anti-infectious drugs, with potential major implications for the management of antimicrobial resistance and the rapid response to future epidemic or pandemic (re)emerging diseases for which we are still disarmed

    Combination Therapy with Oseltamivir and Favipiravir Delays Mortality but Does Not Prevent Oseltamivir Resistance in Immunodeficient Mice Infected with Pandemic A(H1N1) Influenza Virus

    No full text
    Immunosuppressed individuals can shed influenza virus for prolonged periods of time, leading to the frequent emergence of antiviral resistance. We evaluated the benefits of oseltamivir and favipiravir combination therapy compared to single antiviral agents and monitored the emergence of drug-resistant variants in a pharmacologically immunosuppressed mouse model infected with the A(H1N1) pandemic influenza virus. C57BL/6 mice were immunosuppressed with cyclophosphamide and infected with a lethal dose of pandemic influenza A(H1N1) virus. Forty-eight hours post-infection, mice were treated with oseltamivir (20 mg/kg), favipiravir (20 or 50 mg/kg) or both agents BID for 5 or 10 days. Body weight losses, survival rates, lung viral titers, cytokine levels and emergence of resistant viruses were evaluated. Treatment of immunosuppressed mice with high (50 mg/kg) but not low (20 mg/kg) doses of favipiravir in combination with oseltamivir (20 mg/kg) significantly delayed mortality and reduced lung viral titers compared to treatment with a single drug regimen with oseltamivir but did not prevent the emergence of oseltamivir-resistant H275Y neuraminidase variants. Combination therapy with oseltamivir and favipiravir should be considered for evaluation in clinical trials

    Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines.

    No full text
    The human metapneumovirus (HMPV) fusion (F) protein is the most immunodominant protein, yet subunit vaccines containing only this protein do not confer complete protection. The HMPV matrix (M) protein induces the maturation of antigen-presenting cells in vitro. The inclusion of the M protein into an F protein subunit vaccine might therefore provide an adjuvant effect. We administered the F protein twice intramuscularly, adjuvanted with alum, the M protein or both, to BALB/c mice at 3 week intervals. Three weeks after the boost, mice were infected with HMPV and monitored for 14 days. At day 5 post-challenge, pulmonary viral titres, histopathology and cytokine levels were analysed. Mice immunized with F+alum and F+M+alum generated significantly more neutralizing antibodies than mice immunized with F only [titres of 47 ± 7 (P<0.01) and 147 ± 13 (P<0.001) versus 17 ± 2]. Unlike F only [1.6 ± 0.5 × 10(3) TCID50 (g lung)(-1)], pulmonary viral titres in mice immunized with F+M and F+M+alum were undetectable. Mice immunized with F+M presented the most important reduction in pulmonary inflammation and the lowest T-helper Th2/Th1 cytokine ratio. In conclusion, addition of the HMPV-M protein to an F protein-based vaccine modulated both humoral and cellular immune responses to subsequent infection, thereby increasing the protection conferred by the vaccine.info:eu-repo/semantics/publishe

    Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections

    No full text
    International audienceBackground and PurposeProtease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. Experimental ApproachPharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection. Key ResultsIn vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH2 showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition. Conclusion and ImplicationsThese data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections

    Effect of in vitro syncytium formation on the severity of human metapneumovirus disease in a murine model.

    No full text
    Human metapneumovirus (HMPV) is an important cause of acute respiratory tract infections (ARTI) in children, elderly individuals and immunocompromised patients. In vitro, different HMPV strains can induce variable cytopathic effects ranging from large multinucleated syncytia to focal cell rounding. In this study, we investigated the impact of different in vitro phenotypes of two HMPV strains on viral replication and disease severity in a BALB/c mouse model. We first generated two recombinant GFP-expressing HMPV viruses: C-85473, a syncytium-inducing strain (rC-85473) belonging to the A1 subtype and CAN98-75, a focal cell rounding-inducing strain (rCAN98-75) of the B2 subtype. We subsequently exchanged the F genes of both strains to create the chimeric viruses rC-85473_F and rCAN98-75_F. We demonstrated that the F protein was the sole protein responsible for the syncytium phenotype and that viruses carrying a syncytium-inducing F protein replicated to significantly higher titers in vitro. In vivo, however, the virulence and replicative capacity of the different HMPV strains did not appear to be solely dependent on the F gene but also on the viral background, with the strains containing the C-85473 background inducing more weight loss as well as increased lung viral titers, pro-inflammatory cytokines and inflammation than strains containing the CAN98-75 background. In conclusion, the F protein is the main determinant of syncytium formation and replication kinetics in vitro, although it is not the only factor implicated in HMPV disease severity in mice.info:eu-repo/semantics/publishe

    Design and Validation with Influenza A Virus of an Aerosol Transmission Chamber for Ferrets

    No full text
    Background: The importance of aerosols in the spread of viruses like influenza is still a subject of debate. Indeed, most viruses can also be transmitted through direct contact and droplets. Therefore, the importance of the airborne route in a clinical context is difficult to determine. The aim of this study was to design a chamber system to study the airborne transmission of viruses between ferrets. Methods: A system composed of three chambers connected in series, each one housing one ferret and preventing direct contact, was designed. The chambers were designed to house the ferrets for several days and to study the transmission of viruses from an infected (index) ferret to two na&#239;ve ferrets via aerosols and droplets or aerosols only. A particle separator was designed that can be used to modulate the size of the particles traveling between the chambers. The chamber system was validated using standard dust as well as with ferrets infected with influenza A virus. Conclusions: The 50% efficiency cut-off of the separator could be modulated between a 5-&#181;m and an 8-&#181;m aerodynamic diameter. In the described setup, influenza A virus was transmitted through the aerosol route in two out of three experiments, and through aerosols and droplets in all three experiments
    corecore