79 research outputs found

    Distribution of Aerosolized Particles in Healthy and Emphysematous Rat Lungs: Comparison Between Experimental and Numerical Studies

    Get PDF
    International audienceIn silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies

    Airflow and Particle Deposition Simulations in Health and Emphysema: From In Vivo to In Silico Animal Experiments

    Get PDF
    International audienceImage-based in-silico modeling tools provide detailed velocity and particle deposition data. However, care must be taken when prescribing boundary conditions to model lung physiology in health or disease, such as in emphysema. In this study, the respiratory resistance and compliance were obtained by solving an inverse problem; a 0D global model based on healthy and emphysematous rat experimental data. Multi-scale CFD simulations were performed by solving the 3D Navier Stokes equations in an MRI-derived rat geometry coupled to a 0D model. Particles with 0.95 um diameter were tracked and their distribution in the lung was assessed. Seven 3D-0D simulations were performed: healthy, homogeneous, and five heterogeneous emphysema cases. Compliance (C) was significantly higher (p = 0.04) in the emphysematous rats (C = 0.37 +/- 0.14 cm^3 / cmH_2O) compared to the healthy rats (C = 0.25 +/- 0 0.04 cm^3 / cmH_2O), while the resistance remained unchanged (p = 0.83). There were increases in airflow, particle deposition in the 3D model, and particle delivery to the diseased regions for the heterogeneous cases compared to the homogeneous cases. The results highlight the importance of multi-scale numerical simulations to study airflow and particle distribution in healthy and diseased lungs. The effect of particle size and gravity were studied. Once available, these in-silico predictions may be compared to experimental deposition data

    Aerosol Transport Modeling: The Key Link Between Lung Infections of Individuals and Populations

    Get PDF
    The recent COVID-19 pandemic has propelled the field of aerosol science to the forefront, particularly the central role of virus-laden respiratory droplets and aerosols. The pandemic has also highlighted the critical need, and value for, an information bridge between epidemiological models (that inform policymakers to develop public health responses) and within-host models (that inform the public and health care providers how individuals develop respiratory infections). Here, we review existing data and models of generation of respiratory droplets and aerosols, their exhalation and inhalation, and the fate of infectious droplet transport and deposition throughout the respiratory tract. We then articulate how aerosol transport modeling can serve as a bridge between and guide calibration of within-host and epidemiological models, forming a comprehensive tool to formulate and test hypotheses about respiratory tract exposure and infection within and between individuals

    Aerosol Transport Modeling: The Key Link Between Lung Infections of Individuals and Populations

    Get PDF
    The recent COVID-19 pandemic has propelled the field of aerosol science to the forefront, particularly the central role of virus-laden respiratory droplets and aerosols. The pandemic has also highlighted the critical need, and value for, an information bridge between epidemiological models (that inform policymakers to develop public health responses) and within-host models (that inform the public and health care providers how individuals develop respiratory infections). Here, we review existing data and models of generation of respiratory droplets and aerosols, their exhalation and inhalation, and the fate of infectious droplet transport and deposition throughout the respiratory tract. We then articulate how aerosol transport modeling can serve as a bridge between and guide calibration of within-host and epidemiological models, forming a comprehensive tool to formulate and test hypotheses about respiratory tract exposure and infection within and between individuals

    Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure

    Get PDF
    Venous gas bubbles occur in recreational SCUBA divers in the absence of decompression sickness, forming venous gas emboli (VGE) which are trapped within pulmonary circulation and cleared by the lung without overt pathology. We hypothesized that asymptomatic VGE would transiently increase ventilation-perfusion mismatch due to their occlusive effects within the pulmonary circulation. Two sets of healthy volunteers (n = 11, n = 12) were recruited to test this hypothesis with a single recreational ocean dive or a baro-equivalent dry hyperbaric dive. Pulmonary studies (intrabreath VA/Q (iV/Q), alveolar dead space, and FVC) were conducted at baseline and repeat 1- and 24-h after the exposure. Contrary to our hypothesis VA/Q mismatch was decreased 1-h post-SCUBA dive (iV/Q slope 0.023 ± 0.008 ml−1 at baseline vs. 0.010 ± 0.005 NS), and was significantly reduced 24-h post-SCUBA dive (0.000 ± 0.005, p < 0.05), with improved VA/Q homogeneity inversely correlated to dive severity. No changes in VA/Q mismatch were observed after the chamber dive. Alveolar dead space decreased 24-h post-SCUBA dive (78 ± 10 ml at baseline vs. 56 ± 5, p < 0.05), but not 1-h post dive. FVC rose 1-h post-SCUBA dive (5.01 ± 0.18 l vs. 5.21 ± 0.26, p < 0.05), remained elevated 24-h post SCUBA dive (5.06 ± 0.2, p < 0.05), but was decreased 1-hr after the chamber dive (4.96 ± 0.31 L to 4.87 ± 0.32, p < 0.05). The degree of VA/Q mismatch in the lung was decreased following recreational ocean dives, and was unchanged following an equivalent air chamber dive, arguing against an impact of VGE on the pulmonary circulation

    Numerical and experimental investigation of aerosol transport and depostion in the human lung

    No full text
    Cette thĂšse traite de l'Ă©tude numĂ©rique et expĂ©rimentale du transport et de la dĂ©position d'aĂ©rosols dans les poumons. La partie numĂ©rique du travail porte sur des simulations uni-, bi- et tridimensionnelles du comportement des aĂ©rosols dans la structure pulmonaire. Les simulations unidimensionnelles (1D) sont effectuĂ©es dans des modĂšles trompettes et multibranche similaires Ă  ceux utilisĂ©s dans les Ă©tudes de transport et de mĂ©lange gazeux dans les poumons. Le dĂ©pĂŽt total, le profil des dĂ©pĂŽts le long des diffĂ©rentes gĂ©nĂ©rations de l'arbre bronchique ainsi que la dispersion de boli d'aĂ©rosols sont calculĂ©s en fonction de la taille des particules et du protocole respiratoire. Un bolus consiste en un faible volume d'aĂ©rosols inhalĂ© sous la forme d'un pic de concentration au cours d'une inspiration d'air pur. Les rĂ©sultats montrent les limitations intrinsĂšques liĂ©es aux modĂšles 1D quant Ă  la description du transport des aĂ©rosols dans les poumons et suggĂšrent l'utilisation d'Ă©quations multidimensionnelles pour dĂ©crire le transport de particules. Des simulations bidimensionnelles (2D) sont alors dĂ©veloppĂ©es pour dĂ©crire le comportement des aĂ©rosols dans un modĂšle reprĂ©sentatif de la zone alvĂ©olaire du poumon humain. Les simulations montrent que les particules ne se dĂ©posent pas uniformĂ©ment sur les parois alvĂ©olaires des conduits mais qu'elles sont principalement localisĂ©es prĂšs de l'entrĂ©e des alvĂ©oles et ceci principalement dans le cas de petites particules (diamĂštre infĂ©rieure Ă  0.5 mm). De plus, les rĂ©sultats montrent que le traditionnel coefficient de dispersion utilisĂ© dans l'approche unidimensionnelle ne peut pas ĂȘtre extrapolĂ© dans la zone alvĂ©olaire du poumon.Finalement, des simulations tridimensionnelles (3D) sont rĂ©alisĂ©es dans un modĂšle d'un conduit pulmonaire entourĂ© d'alvĂ©oles et confirment la dĂ©position largement hĂ©tĂ©rogĂšne des aĂ©rosols calculĂ©e dans l'Ă©tude bidimensionnelle suggĂ©rant que les concentrations locales et moyennes en aĂ©rosols peuvent ĂȘtre substantiellement diffĂ©rentes.ParallĂšlement, des donnĂ©es expĂ©rimentales de dĂ©position totale et de dispersion de boli d'aĂ©rosols sont obtenues et comparĂ©es aux rĂ©sultats numĂ©riques. Des indices tels que la dispersion du bolus expirĂ©, la dĂ©position totale ou le dĂ©placement du mode entre les courbes de concentration des boli inspirĂ© et expirĂ© mesurĂ©s au niveau de la bouche ont Ă©tĂ© Ă©valuĂ©s. Des simulations numĂ©riques similaire aux tests expĂ©rimentaux sont Ă©galement effectuĂ©es. Bien qu'une approche relativement simplifiĂ©e soit utilisĂ©e, il apparaĂźt que les simulations dĂ©crivent raisonnablement bien les rĂ©sultats expĂ©rimentaux.Doctorat en sciences appliquĂ©esinfo:eu-repo/semantics/nonPublishe

    Numerical and experimental investigation of aerosol transport and depostion in the human lung

    No full text
    Cette thĂšse traite de l'Ă©tude numĂ©rique et expĂ©rimentale du transport et de la dĂ©position d'aĂ©rosols dans les poumons. La partie numĂ©rique du travail porte sur des simulations uni-, bi- et tridimensionnelles du comportement des aĂ©rosols dans la structure pulmonaire. Les simulations unidimensionnelles (1D) sont effectuĂ©es dans des modĂšles trompettes et multibranche similaires Ă  ceux utilisĂ©s dans les Ă©tudes de transport et de mĂ©lange gazeux dans les poumons. Le dĂ©pĂŽt total, le profil des dĂ©pĂŽts le long des diffĂ©rentes gĂ©nĂ©rations de l'arbre bronchique ainsi que la dispersion de boli d'aĂ©rosols sont calculĂ©s en fonction de la taille des particules et du protocole respiratoire. Un bolus consiste en un faible volume d'aĂ©rosols inhalĂ© sous la forme d'un pic de concentration au cours d'une inspiration d'air pur. Les rĂ©sultats montrent les limitations intrinsĂšques liĂ©es aux modĂšles 1D quant Ă  la description du transport des aĂ©rosols dans les poumons et suggĂšrent l'utilisation d'Ă©quations multidimensionnelles pour dĂ©crire le transport de particules. Des simulations bidimensionnelles (2D) sont alors dĂ©veloppĂ©es pour dĂ©crire le comportement des aĂ©rosols dans un modĂšle reprĂ©sentatif de la zone alvĂ©olaire du poumon humain. Les simulations montrent que les particules ne se dĂ©posent pas uniformĂ©ment sur les parois alvĂ©olaires des conduits mais qu'elles sont principalement localisĂ©es prĂšs de l'entrĂ©e des alvĂ©oles et ceci principalement dans le cas de petites particules (diamĂštre infĂ©rieure Ă  0.5 mm). De plus, les rĂ©sultats montrent que le traditionnel coefficient de dispersion utilisĂ© dans l'approche unidimensionnelle ne peut pas ĂȘtre extrapolĂ© dans la zone alvĂ©olaire du poumon.Finalement, des simulations tridimensionnelles (3D) sont rĂ©alisĂ©es dans un modĂšle d'un conduit pulmonaire entourĂ© d'alvĂ©oles et confirment la dĂ©position largement hĂ©tĂ©rogĂšne des aĂ©rosols calculĂ©e dans l'Ă©tude bidimensionnelle suggĂ©rant que les concentrations locales et moyennes en aĂ©rosols peuvent ĂȘtre substantiellement diffĂ©rentes.ParallĂšlement, des donnĂ©es expĂ©rimentales de dĂ©position totale et de dispersion de boli d'aĂ©rosols sont obtenues et comparĂ©es aux rĂ©sultats numĂ©riques. Des indices tels que la dispersion du bolus expirĂ©, la dĂ©position totale ou le dĂ©placement du mode entre les courbes de concentration des boli inspirĂ© et expirĂ© mesurĂ©s au niveau de la bouche ont Ă©tĂ© Ă©valuĂ©s. Des simulations numĂ©riques similaire aux tests expĂ©rimentaux sont Ă©galement effectuĂ©es. Bien qu'une approche relativement simplifiĂ©e soit utilisĂ©e, il apparaĂźt que les simulations dĂ©crivent raisonnablement bien les rĂ©sultats expĂ©rimentaux.Doctorat en sciences appliquĂ©esinfo:eu-repo/semantics/nonPublishe
    • 

    corecore