13 research outputs found

    Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains

    Get PDF
    Recent increase in the detection of unusual G1P[8], G3P[8], G8P[8], and G9P[4] Rotavirus A (RVA)strains bearing the DS-1-like constellation of the non-G, non-P genes (hereafter referred to as the genotype 2 backbone) requires better understanding of their evolutionary relationship.However, within a genotype, there is lack of a consensus lineage designation framework and a set of common sequences that can serve as references. Phylogenetic analyses were carried out on over 8,500 RVA genotype 2 genes systematically retrieved from the rotavirus database within the NCBI Virus Variation Resource. In line with previous designations, using pairwise comparison of cogent nucleotide sequences and stringent bootstrap support, reference lineages were defined. This study proposes a lineage framework and provides a dataset ranging from 34 to 145 sequences for each genotype 2 gene for orderly lineage designation of global genotype 2 genes of RVAs detected in human and animals. The framework identified five to 31 lineages depending on the gene.The least number of lineages (five to seven) were observed in genotypes A2 (NSP1), T2 (NSP3) and H2 (NSP5) which are limited to human RVA whereas the most number of lineages (31) was observed in genotype E2 (NSP4). Sharing of the same lineage constellations of the genotype 2 backbone genes between recently-emerging, unusual G1P[8], G3P[8], G8P[8] and G9P[4] reassortants and many contemporary G2P[4] strains provided strong support to the hypothesis that unusual genotype 2 strains originated primarily from reassortment events in the recent past involving contemporary G2P[4] strains as one parent and ordinary genotype 1 strains or animal RVA strains as the other. The lineage framework with selected reference sequences will help researchers to identify the lineage to which a given genotype 2 strain belongs, and trace the evolutionary history of common and unusual genotype 2 strains in circulation

    Human rotavirus replicates in salivary glands and primes immune responses in facial and intestinal lymphoid tissues of gnotobiotic pigs

    Get PDF
    Human rotavirus (HRV) is a leading cause of viral gastroenteritis in children across the globe. The virus has long been established as a pathogen of the gastrointestinal tract, targeting small intestine epithelial cells and leading to diarrhea, nausea, and vomiting. Recently, this classical infection pathway was challenged by the findings that murine strains of rotavirus can infect the salivary glands of pups and dams and transmit via saliva from pups to dams during suckling. Here, we aimed to determine if HRV was also capable of infecting salivary glands and spreading in saliva using a gnotobiotic (Gn) pig model of HRV infection and disease. Gn pigs were orally inoculated with various strains of HRV, and virus shedding was monitored for several days post-inoculation. HRV was shed nasally and in feces in all inoculated pigs. Infectious HRV was detected in the saliva of four piglets. Structural and non-structural HRV proteins, as well as the HRV genome, were detected in the intestinal and facial tissues of inoculated pigs. The pigs developed high IgM antibody responses in serum and small intestinal contents at 10 days post-inoculation. Additionally, inoculated pigs had HRV-specific IgM antibody-secreting cells present in the ileum, tonsils, and facial lymphoid tissues. Taken together, these findings indicate that HRV can replicate in salivary tissues and prime immune responses in both intestinal and facial lymphoid tissues of Gn pigs.Instituto de VirologíaFil: Nyblade, Charlotte. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Zhou, Peng. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Maggie. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Annie. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Hensley, Casey. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Fantasia-Davis, Ariana. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Shahrudin, Shabihah. Indiana University. Department of Biology; Estados UnidosFil: Hoffer, Miranda. Indiana University. Department of Biology; Estados UnidosFil: Agbemabiese, Chantal Ama. Indiana University. Department of Biology; Estados UnidosFil: LaRue, Lauren. GIVAX Inc.; Estados UnidosFil: Barro, Mario. GIVAX Inc.; Estados UnidosFil: Patton, John T. Indiana University. Department of Biology; Estados UnidosFil: Parreño, Gladys Viviana. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Parreño, Gladys Viviana. Instituto Nacional de Tecnología Agropecuaria (INTA). INCUINTA. Instituto de Virologia e Innovaciones Tecnologicas (IVIT); ArgentinaFil: Parreño, Gladys Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yuan, Lijuan. Virginia Polytechnic Institute and State University. Center for Emerging, Zoonotic, and Arthropod‑Borne Pathogens; Estados Unido

    ロタウイルスの種間伝播とその進化的意義:アフリカからの展望

    Get PDF
    長崎大学学位論文 学位記番号:博(医歯薬)甲第1057号 学位授与年月日:平成30年3月20日Nagasaki University (長崎大学)課程博

    Full genotype constellations of six feline Rotavirus A strains isolatedin Japan in the 1990s including a rare A15 NSP1 genotype

    No full text
    AbstractFull genome sequencing of six feline Rotavirus A (RVA) strains isolated in Japan in the 1990s revealed three genotype constellations,one of which had a unique constellation of G3-P[3]-I3-R3-C3-M3-A15-N3-T3-E3-H6. Genotype A15, carriedby RVA/Cat-tc/JPN/FRV348/1994/G3P[3], is a rare NSP1 genotype, and only one human and one canine RVA strains havethus far been reported to carry this genotype. The other three G3P[3] strains (FRV72, FRV73, and FRV303) possessed aconstellation of I3-R3-C2-M3-A9-N2-T3-E3-H6, whereas two G3P[9] strains (FRV317 and FRV384) possessed a constellationof I3-R3-C3-M3-A3-N3-T3-E3-H3

    Genetic analysis of Ghanaian G1P[8] and G9P[8] rotavirus A strains reveals the impact of P[8] VP4 gene polymorphism on P-genotyping.

    No full text
    The World Health Organisation rotavirus surveillance networks have documented and shown eclectic geographic and temporal diversity in circulating G- and P- genotypes identified in children <5 years of age. To effectively monitor vaccine performance and effectiveness, robust molecular and phylogenetic techniques are essential to detect novel strain variants that might emerge due to vaccine pressure. This study inferred the phylogenetic history of the VP7 and VP4 genes of previously non-typeable strains and provided insight into the diversity of P[8] VP4 sequences which impacted the outcome of our routine VP4 genotyping method. Near-full-length VP7 gene and the VP8* fragment of the VP4 gene were obtained by Sanger sequencing and genotypes were determined using RotaC v2.0 web-based genotyping tool. The genotypes of the 57 rotavirus-positive samples with sufficient stool was determined. Forty-eight of the 57 (84.2%) had the P[8] specificity, of which 43 (89.6%) were characterized as P[8]a subtype and 5 (10.4%) as the rare OP354-like subtype. The VP7 gene of 27 samples were successfully sequenced and their G-genotypes confirmed as G1 (18/27) and G9 (9/27). Phylogenetic analysis of the P[8]a sequences placed them in subcluster IIIc within lineage III together with contemporary G1P[8], G3P[8], G8P[8], and G9P[8] strains detected globally from 2006-2016. The G1 VP7 sequences of the study strains formed a monophyletic cluster with African G1P[8] strains, previously detected in Ghana and Mali during the RotaTeq vaccine trial as well as Togo. The G9 VP7 sequences of the study strains formed a monophyletic cluster with contemporary African G9 sequences from neighbouring Burkina Faso within the major sub-cluster of lineage III. Mutations identified in the primer binding region of the VP8* sequence of the Ghanaian P[8]a strains may have resulted in the genotyping failure since the newly designed primer successfully genotyped the previously non-typeable P[8] strains. In summary, the G1, G9, and P[8]a sequences were highly similar to contemporary African strains at the lineage level. The study also resolved the methodological challenges of the standard genotyping techniques and highlighted the need for regular evaluation of the multiplex PCR-typing method especially in the post-vaccination era. The study further highlights the need for regions to start using sequencing data from local rotavirus strains to design and update genotyping primers

    Whole genome characterization and evolutionary analysis of OP354-like P[8] Rotavirus A strains isolated from Ghanaian children with diarrhoea.

    No full text
    In 2010, the rare OP354-like P[8]b rotavirus subtype was detected in children less than 2 years old in Ghana. In this follow-up study, to provide insight into the evolutionary history of the genome of Ghanaian P[8]b strains RVA/Human-wt/GHA/GHDC949/2010/G9P[8] and RVA/Human-wt/GHA/GHM0094/2010/G9P[8] detected in an infant and a 7-month old child hospitalised for acute gastroenteritis, we sequenced the complete genome using both Sanger sequencing and Illumina MiSeq technology followed by phylogenetic analysis of the near-full length sequences. Both strains possessed the Wa-like/genotype 1 constellation G9P[8]b-I1-R1-C1-M1-A1-N1-T1-E1-H1. Sequence comparison and phylogenetic inference showed that both strains were identical at the lineage level throughout the 11 genome segments. Their VP7 sequences belonged to the major sub-lineage of the G9-lineage III whereas their VP4 sequences belonged to P[8]b cluster I. The VP7 and VP4 genes of the study strains were closely related to a Senegalese G9P[8]b strain detected in 2009. In the remaining nine genome segments, both strains consistently clustered together with Wa-like RVA strains possessing either P[8]a or P[8]b mostly of African RVA origin. The introduction of a P[8]b subtype VP4 gene into the stable Wa-like strain backbone may result in strains that might propagate easily in the human population, with a potential to become an important public health concern, especially because it is not certain if the monovalent rotavirus vaccine (Rotarix) used in Ghana will be efficacious against such strains. Our analysis of the full genomes of GHM0094 and GHDC949 adds to knowledge of the genetic make-up and evolutionary dynamics of P[8]b rotavirus strains
    corecore