10 research outputs found

    āļĒāļēāļŠāļĩāļŸāļąāļ™āļŸāļ­āļāļŸāļąāļ™āļ‚āļēāļ§ Whitening Toothpaste

    Get PDF
    āļ„āļ§āļēāļĄāđ„āļĄāđˆāļžāļķāļ‡āļžāļ­āđƒāļˆāđƒāļ™āļŠāļĩāļ‚āļ­āļ‡āļŸāļąāļ™āđāļĨāļ°āļ„āļ§āļēāļĄāļ•āđ‰āļ­āļ‡āļāļēāļĢāđƒāļŦāđ‰āļŸāļąāļ™āļĄāļĩāļŠāļĩāļ‚āļēāļ§āļ‚āļķāđ‰āļ™āļ—āļģāđƒāļŦāđ‰āđ€āļāļīāļ”āļāļēāļĢāļžāļąāļ’āļ™āļēāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļĒāļēāļŠāļĩāļŸāļąāļ™āļŸāļ­āļāļŸāļąāļ™āļ‚āļēāļ§ āļĒāļēāļŠāļĩāļŸāļąāļ™āļŸāļ­āļāļŸāļąāļ™āļ‚āļēāļ§āļĄāļĩāļŠāđˆāļ§āļ™āļ›āļĢāļ°āļāļ­āļšāļŠāļģāļ„āļąāļāļ„āļ·āļ­ āļŠāļēāļĢāļ‚āļąāļ”āļŸāļąāļ™ āļŠāļēāļĢāđ€āļ„āļĄāļĩāļ—āļģāđƒāļŦāđ‰āļŸāļąāļ™āļ‚āļēāļ§ āđāļĨāļ°āļŠāļēāļĢāļĒāđ‰āļ­āļĄāļŠāļĩāļŸāļąāļ™ āđ€āļžāļ·āđˆāļ­āļŠāđˆāļ§āļĒāļ‚āļąāļ”āļŸāļąāļ™āđāļĨāļ°āļ—āļģāđƒāļŦāđ‰āļ„āļĢāļēāļšāļŠāļĩāļ—āļĩāđˆāļ•āļīāļ”āļ­āļĒāļđāđˆāļˆāļēāļ‡āļĨāļ‡ āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļ›āđ‰āļ­āļ‡āļāļąāļ™āļāļēāļĢāđ€āļāļīāļ”āļ„āļĢāļēāļšāļšāļ™āļœāļīāļ§āļŸāļąāļ™āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļŠāļēāđ€āļŦāļ•āļļāļ‚āļ­āļ‡āļāļēāļĢāđ€āļāļīāļ”āļŸāļąāļ™āđ€āļŦāļĨāļ·āļ­āļ‡ āļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ•āļģāļĢāļąāļšāļĒāļēāļŠāļĩāļŸāļąāļ™āļŸāļ­āļāļŸāļąāļ™āļ‚āļēāļ§āļ—āļĩāđˆāļŠāļģāļ„āļąāļ āļ„āļ·āļ­ āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ āļēāļĒāļ™āļ­āļāļĢāđˆāļēāļ‡āļāļēāļĒ āđ‚āļ”āļĒāļāļēāļĢāļ§āļąāļ”āļāļēāļĢāļĨāļ”āļ„āļĢāļēāļšāļšāļ™āļœāļīāļ§āļŸāļąāļ™āļ§āļąāļ§āļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļąāļ”āļŠāļĩ āđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ āļēāļĒāđƒāļ™āļĢāđˆāļēāļ‡āļāļēāļĒ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ­āļēāļŠāļēāļŠāļĄāļąāļ„āļĢāļ—āļĩāđˆāļĄāļĩāļ„āļĢāļēāļšāļšāļ™āļœāļīāļ§āļŸāļąāļ™āļ—āļģāļāļēāļĢāđāļ›āļĢāļ‡āļŸāļąāļ™āļ”āđ‰āļ§āļĒāļĒāļēāļŠāļĩāļŸāļąāļ™āļŸāļ­āļāļŸāļąāļ™āļ‚āļēāļ§ āđāļĨāļ°āļšāļąāļ™āļ—āļķāļāļĢāļ°āļ”āļąāļšāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āļ­āļ‡āļ„āļĢāļēāļšāļšāļ™āļœāļīāļ§āļŸāļąāļ™āļ—āļĩāđˆāļĨāļ”āļĨāļ‡āļ•āļēāļĄāļŠāđˆāļ§āļ‡āđ€āļ§āļĨāļēāļ—āļĩāđˆāļ—āļģāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļąāļ”āļŠāļĩ āļ›āļąāļˆāļˆāļļāļšāļąāļ™āļĄāļĩāļĢāļēāļĒāļ‡āļēāļ™āļāļēāļĢāđƒāļŠāđ‰āļĒāļēāļŠāļĩāļŸāļąāļ™āļŸāļ­āļāļŸāļąāļ™āļ‚āļēāļ§āļ§āđˆāļēāļŠāļēāļĄāļēāļĢāļ–āļ‚āļˆāļąāļ”āļ„āļĢāļēāļšāđ€āļŦāļĨāļ·āļ­āļ‡āļšāļ™āļœāļīāļ§āļŸāļąāļ™āđāļĨāļ°āļ—āļģāđƒāļŦāđ‰āļŸāļąāļ™āļ‚āļēāļ§āļ‚āļķāđ‰āļ™āđ„āļ”āđ‰āļĄāļēāļāļāļ§āđˆāļēāļĒāļēāļŠāļĩāļŸāļąāļ™āļœāļŠāļĄāļŸāļĨāļđāļ­āļ­āđ„āļĢāļ”āđŒ āđāļĨāļ°āļāļēāļĢāđ€āļ•āļīāļĄāļŠāļēāļĢāļĒāđ‰āļ­āļĄāļŠāļĩāļŸāļąāļ™āļĨāļ‡āđƒāļ™āļĒāļēāļŠāļĩāļŸāļąāļ™āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļ„āļĢāļēāļšāļšāļ™āļœāļīāļ§āļŸāļąāļ™āđāļĨāļ°āļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāđƒāļŦāđ‰āļŸāļąāļ™āļ‚āļēāļ§ āļ„āļģāļŠāļģāļ„āļąāļ: āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļĩāļŸāļąāļ™āđ€āļ›āļĨāļĩāđˆāļĒāļ™,  āļĒāļēāļŠāļĩāļŸāļąāļ™āļŸāļ­āļāļŸāļąāļ™āļ‚āļēāļ§,  āļāļēāļĢāļŸāļ­āļāļŠāļĩāļŸāļąāļ™āļ‚āļēāļ§The dissatisfaction in teeth color and the desire for teeth whitening are the reason whitening toothpaste products have been developed. The important ingredients of whitening toothpaste for discoloration improvement, yellow plaque removal and prevention of plaque formation are as follows: abrasives, teeth whitening chemicals and opacifying agent. The major evaluation methods of whitening toothpaste are 1) ex vivo evaluation, for example, the measurement for decreasing plaque on stained cow teeth using colorimeter and 2) in vivo evaluation by recording the decrement of stained teeth of volunteers after brushing with whitening toothpaste using colorimeter. Presently, there is the report indicating that whitening toothpaste is more effective than using fluoride toothpaste in yellow stained teeth surface removal and remaining the whiten teeth. The addition of coloring agent stains on tooth enamel and promotes teeth whitening. Keywords: teeth discoloration, whitening toothpaste, teeth whitening

    āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āđ„āļĄāđˆāļŠāļĄāļĄāļēāļ•āļĢāđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļ—āļēāļ‡āđ€āļ āļŠāļąāļŠāļāļĢāļĢāļĄ Anisotropic Membrane and Its Pharmaceutical Applications

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļĒāļēāļĄāļĩāļˆāļļāļ”āļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđƒāļŠāđ‰āļĢāļ°āļšāļšāļ™āļģāļŠāđˆāļ‡āļĒāļēāđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāļ­āļąāļ•āļĢāļēāļāļēāļĢāļ‹āļķāļĄāļœāđˆāļēāļ™āļĒāļēāļˆāļēāļāļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāđ€āļ‚āđ‰āļēāļŠāļđāđˆāļāļĢāļ°āđāļŠāđ‚āļĨāļŦāļīāļ• āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ–āļđāļāļ„āđ‰āļ™āļžāļšāļĄāļēāļ™āļēāļ™āđāļĨāđ‰āļ§ āđ‚āļ”āļĒāļžāļąāļ’āļ™āļēāļ„āļļāļ“āļ āļēāļžāđƒāļŦāđ‰āļĄāļĩāļ„āļ§āļēāļĄāļŠāļĄāļšāļđāļĢāļ“āđŒāđāļĨāļ°āļŠāļēāļĄāļēāļĢāļ–āļ„āļąāļ”āđāļĒāļāļŠāļēāļĢāđ„āļ”āđ‰āļĢāļ§āļ”āđ€āļĢāđ‡āļ§ āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āđ„āļĄāđˆāļŠāļĄāļĄāļēāļ•āļĢāļŠāļ™āļīāļ”āļ—āļĩāđˆāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ 2 āļŠāđˆāļ§āļ™ āļ„āļ·āļ­ āļŠāļąāđ‰āļ™āļšāļ™āļŦāļĢāļ·āļ­āļŠāļąāđ‰āļ™āļ„āļąāļ”āđ€āļĨāļ·āļ­āļāđ€āļ‰āļžāļēāļ°āļĄāļĩāļĨāļąāļāļĐāļ“āļ°āļšāļēāļ‡āđāļĨāļ°āđāļ™āđˆāļ™ āļ—āļģāļŦāļ™āđ‰āļēāļ—āļĩāđˆāļ„āļąāļ”āđ€āļĨāļ·āļ­āļāļŠāļēāļĢ āļŠāđˆāļ§āļ™āļŠāļąāđ‰āļ™āļĨāđˆāļēāļ‡āļŦāļĢāļ·āļ­āļŠāļąāđ‰āļ™āļ„āđ‰āļģāļĒāļąāļ™ āļĄāļĩāļĨāļąāļāļĐāļ“āļ°āļŦāļ™āļē āļĄāļĩāļĢāļđāļžāļĢāļļāļ™ āđāļĨāļ°āđāļ‚āđ‡āļ‡āđāļĢāļ‡āļāļ§āđˆāļē āļ—āļģāļŦāļ™āđ‰āļēāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āđ‚āļ„āļĢāļ‡āļĢāđˆāļēāļ‡āļ„āđ‰āļģāļˆāļļāļ™ āļˆāļķāļ‡āļ—āļģāđƒāļŦāđ‰āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āđ„āļĄāđˆāļŠāļĄāļĄāļēāļ•āļĢāļŠāļ™āļīāļ”āļ™āļĩāđ‰ āļĒāļ­āļĄāđƒāļŦāđ‰āļŠāļēāļĢāđ„āļŦāļĨāļœāđˆāļēāļ™āđ„āļ”āđ‰āļ”āļĩ āđāļĨāļ°āļ•āđ‰āļēāļ™āļ—āļēāļ™āļāļēāļĢāļ­āļļāļ”āļ•āļąāļ™āļšāļĢāļīāđ€āļ§āļ“āļœāļīāļ§āļŦāļ™āđ‰āļēāđ„āļ”āđ‰āļ”āļĩāļāļ§āđˆāļēāđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āļŠāļĄāļĄāļēāļ•āļĢ āļ§āļąāļŠāļ”āļļāļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āļĄāļĩāļŦāļĨāļēāļĒāļ›āļĢāļ°āđ€āļ āļ— āđ‚āļ”āļĒāļ—āļĩāđˆāđƒāļŠāđ‰āļ—āļēāļ‡āđ€āļ āļŠāļąāļŠāļāļĢāļĢāļĄāđ€āļ›āđ‡āļ™āļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāļ—āļĩāđˆāļŠāļĨāļēāļĒāļ•āļąāļ§āđ„āļ”āđ‰āļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļžāđāļĨāļ°āđ€āļ‚āđ‰āļēāļāļąāļšāļĢāđˆāļēāļ‡āļāļēāļĒāđ„āļ”āđ‰āļ”āļĩ āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļ™āđ‰āļ™āļ–āļķāļ‡āļāļēāļĢāđ€āļ•āļĢāļĩāļĒāļĄāđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āļŠāļ™āļīāļ”āļ™āļĩāđ‰āđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢāļāļĨāļąāļšāļ§āļąāļāļ āļēāļ„ āļ„āļ·āļ­āļāļēāļĢāļ—āļģāđƒāļŦāđ‰āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļžāļ­āļĨāļīāđ€āļĄāļ­āļĢāđŒāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļˆāļēāļāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāđ€āļ™āļ·āđ‰āļ­āđ€āļ”āļĩāļĒāļ§āđ€āļ›āđ‡āļ™āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđāļ‚āđ‡āļ‡āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļžāļĢāļļāļ™āđ€āļĄāļ·āđˆāļ­āļĄāļĩāļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ‚āļ­āļ‡āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāļĢāļ·āļ­āļŠāđˆāļ§āļ™āļ›āļĢāļ°āļāļ­āļš āļĄāļĩāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļļāļ“āļĨāļąāļāļĐāļ“āļ°āļ‚āļ­āļ‡āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āļĢāļđāļžāļĢāļļāļ™āđ€āļžāļ·āđˆāļ­āđ€āļ‚āđ‰āļēāđƒāļˆāļ–āļķāļ‡āļŠāļĄāļšāļąāļ•āļīāļ”āđ‰āļēāļ™āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđāļĨāļ°āļ„āļ§āļēāļĄāļžāļĢāļļāļ™ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰ āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āđ„āļĄāđˆāļŠāļĄāļĄāļēāļ•āļĢāļ–āļđāļāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļĢāļ°āļšāļšāļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļĒāļē āđ€āļŠāđˆāļ™ āđ€āļĄāļĄāđ€āļšāļĢāļ™ āļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļĒāļēāļœāđˆāļēāļ™āļœāļīāļ§āļŦāļ™āļąāļ‡ āļ§āļąāļŠāļ”āļļāļ•āļāđāļ•āđˆāļ‡āđāļœāļĨ āđ€āļĄāđ‡āļ”āļĒāļēāđāļĨāļ°āđāļ„āļ›āļ‹āļđāļĨāļ­āļ­āļŠāđ‚āļĄ-āļ•āļīāļ āđāļĨāļ°āļ§āļąāļŠāļ”āļļāđƒāļ™āļ§āļīāļĻāļ§āļāļĢāļĢāļĄāđ€āļ™āļ·āđ‰āļ­āđ€āļĒāļ·āđˆāļ­ āļ„āļģāļŠāļģāļ„āļąāļ: āđ€āļĒāļ·āđˆāļ­āđāļœāđˆāļ™āđ„āļĄāđˆāļŠāļĄāļĄāļēāļ•āļĢ, āđ€āļ āļŠāļąāļŠāļāļĢāļĢāļĄ, āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰ Abstract Purpose of controlled drug delivery system in pharmaceutical industry is to moderate the permeation rate of drug from a reservoir into the blood. Synthetic membranes had been discovered long time ago and developed for defect-free and high-flux properties. Usually, anisotropic membrane has two compositions which made up by a thin covered, dense skin as selective layer with thick, strong porous support layer underneath. Therefore, membrane flux is high, anti-fouling character and better permeable than the isotropic membrane. The membrane materials mostly used for pharmaceutical science are biodegradable and biocompatible polymers. This review concentrates on the membrane production with phase inversion even initially homogenous polymer solution is precipitated to a porous solidified structure via thermal quenching or composition change. The characterization of anisotropic membrane is conducted for understanding its structure and porosity properties. Anisotropic membrane has been employed for controlled drug release systems including transdermal membrane, wound dressing, osmotic tablet and capsule, and tissue engineering materials. Keywords: anisotropic membrane, pharmaceutical, application

    āđ‚āļŸāļĄāļ—āļēāļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļģāļ­āļēāļ‡āđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰ Cosmetic Foam and Its Applications

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āđ‚āļŸāļĄāļ—āļēāļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļģāļ­āļēāļ‡āđ€āļ›āđ‡āļ™āļĢāļ°āļšāļšāļ‹āļķāđˆāļ‡āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļāđŠāļēāļ‹āļāļĢāļ°āļˆāļēāļĒāļ•āļąāļ§āđƒāļ™āļ‚āļ­āļ‡āđ€āļŦāļĨāļ§āļŦāļĢāļ·āļ­āļāļķāđˆāļ‡āđāļ‚āđ‡āļ‡ āđ‚āļ”āļĒāđ€āļ•āļĢāļĩāļĒāļĄāđƒāļ™āļĢāļđāļ›āđāļšāļšāļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ‚āļ­āļ‡āļŠāļēāļĢāļāđˆāļ­āđ‚āļŸāļĄ āļŦāļĢāļ·āļ­āļ­āļīāļĄāļąāļĨāļŠāļąāļ™āļ—āļĩāđˆāļĄāļĩāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āđƒāļ™āļ›āļĢāļīāļĄāļēāļ“āļ•āđˆāļģāļ‹āļķāđˆāļ‡āđ€āļāļīāļ”āđ€āļ›āđ‡āļ™āļŸāļ­āļ‡āđ‚āļŸāļĄāļ‚āļ“āļ°āđƒāļŠāđ‰āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒ āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ‚āļ­āļ‡āļŸāļ­āļ‡āđ‚āļŸāļĄāļĄāļĩāļĨāļąāļāļĐāļ“āļ°āđ€āļ›āđ‡āļ™āļŸāļ­āļ‡āļāđŠāļēāļ‹āļ—āļĩāđˆāļŦāļļāđ‰āļĄāļ”āđ‰āļ§āļĒāļ‚āļ­āļ‡āđ€āļŦāļĨāļ§ āđ‚āļ”āļĒāļĄāļĩāļŠāļēāļĢāļāđˆāļ­āđ‚āļŸāļĄāđ€āļĢāļĩāļĒāļ‡āļ•āļąāļ§āđƒāļ™āļĨāļąāļāļĐāļ“āļ°āļœāļĨāļķāļāđ€āļŦāļĨāļ§āļ—āļĩāđˆāļœāļīāļ§āļŠāļąāļĄāļœāļąāļŠāļ‚āļ­āļ‡āļŠāļ­āļ‡āļ§āļąāļāļ āļēāļ„ āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļˆāļēāļāļāļēāļĢāļˆāļąāļ”āđ€āļĢāļĩāļĒāļ‡āļ•āļąāļ§āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āļ§āļēāļĄāļ„āļ‡āļ•āļąāļ§āļ‚āļ­āļ‡āļŸāļ­āļ‡āđ‚āļŸāļĄ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āļ„āļ§āļēāļĄāļ„āļ‡āļ•āļąāļ§āļ‚āļ­āļ‡āļŸāļ­āļ‡āđ‚āļŸāļĄāļ‚āļķāđ‰āļ™āļāļąāļšāļŠāļ™āļīāļ”āđāļĨāļ°āļ›āļĢāļīāļĄāļēāļ“āļ‚āļ­āļ‡āļŠāļēāļĢāļāđˆāļ­āđ‚āļŸāļĄāđāļĨāļ°āļĒāļąāļ‡āļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ„āļ§āļēāļĄāļŦāļ™āļ·āļ”āļ‚āļ­āļ‡āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒ āļŠāļēāļĢāđ€āļžāļīāđˆāļĄāļŸāļ­āļ‡āļŠāļēāļĄāļēāļĢāļ–āđ€āļžāļīāđˆāļĄāļ­āļąāļ•āļĢāļēāļāļēāļĢāđ€āļāļīāļ”āļŸāļ­āļ‡āđ‚āļŸāļĄāđ„āļ”āđ‰ āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ—āļĩāđˆāļŠāļģāļ„āļąāļāļ‚āļ­āļ‡āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ‚āļŸāļĄāļ—āļēāļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļģāļ­āļēāļ‡āđ€āļ›āđ‡āļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđāļĨāļ°āļ„āļ§āļēāļĄāļ„āļ‡āļ•āļąāļ§āđƒāļ™āļāļēāļĢāđ€āļāļīāļ”āļŸāļ­āļ‡āđ‚āļŸāļĄ āļāļēāļĢāđ€āļ•āļĢāļĩāļĒāļĄāđ‚āļŸāļĄāļŠāļēāļĄāļēāļĢāļ–āđ€āļ•āļĢāļĩāļĒāļĄāđ„āļ”āđ‰āļŦāļĨāļēāļĒāļ§āļīāļ˜āļĩāļ‚āļķāđ‰āļ™āļāļąāļšāļĨāļąāļāļĐāļ“āļ°āļ‚āļ­āļ‡āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ—āļĩāđˆāļ•āđ‰āļ­āļ‡āļāļēāļĢ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđ‚āļŸāļĄāļ—āļēāļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļģāļ­āļēāļ‡āđ„āļ”āđ‰āļŦāļĨāļēāļĒāļ­āļĒāđˆāļēāļ‡ āđ€āļŠāđˆāļ™ āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ—āļģāļ„āļ§āļēāļĄāļŠāļ°āļ­āļēāļ” āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ‚āļāļ™āļŦāļ™āļ§āļ” āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļˆāļąāļ”āđāļ•āđˆāļ‡āļ—āļĢāļ‡āļœāļĄ āļ„āļģāļŠāļģāļ„āļąāļ: āđ‚āļŸāļĄ, āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļģāļ­āļēāļ‡, āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒ Abstract Cosmetic foam is a system comprising gas dispersed in fluid or semi-solid prepared in forms of foaming agent solution or emulsion containing gas at low ratio that could generate foam during application. Foam structure contains an air bubble in-folding with fluid comprising foaming agent layer as liquid crystal at interface. The strength of such arrangement influences the foam stability. Foam stability depends on type and amount of foaming agent and relates to the viscosity of product. The foam booster could enhance the rate of foam generation. The main evaluation of cosmetic foam concentrates on its capacity of foam formation and foam stability. There are many foam preparation techniques depending on the desired product. Cosmetic foam could be applied variously such as cleaning, shaving, hair styling products. Keywords: foam, cosmetic, applicatio

    Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel

    No full text
    Solvent exchange induced in situ forming gel (ISG) is the promising drug delivery system for periodontitis treatment owing to the prospect of maintaining an effective high drug level in the gingival crevicular fluid. In the present study, the influence of clove oil (CO) on the characteristics of doxycycline hyclate (DH)-loaded ISG comprising Eudragit RS (ERS) was investigated including viscosity/rheology, syringeability, in vitro gel formation/drug release, matrix formation/solvent diffusion and antimicrobial activities. CO could dissolve ERS and increase the viscosity of ISG and its hydrophobicity could also retard the diffusion of solvent and hinder the drug diffusion; thus, the minimization of burst effect and sustained drug release were achieved effectively. All the prepared ISGs comprising CO could expel through the 27-gauge needle for administration by injection and transform into matrix depot after exposure to the simulated gingival crevicular fluid. The antimicrobial activities against Staphylococcus aureus, Escherichia coli, Streptococcus mutans and Porphyromonas gingivalis were increased when the ratio of CO and N-methyl pyrrolidone (NMP) was decreased from 1:1 to 1:10 owing to higher diffusion of DH except that for C. albicans was increased as CO amount was higher. Therefore, CO could minimize the burst while prolonging the drug release of DH-loaded ERS ISG for use as a local drug delivery system for periodontitis treatment. Keywords: In situ forming gel, Eudragit RS, Clove oil, Doxycycline hyclate, Periodonditis, Burst releas

    Saturated Fatty Acid-Based In Situ Forming Matrices for Localized Antimicrobial Delivery

    No full text
    In recent years, the world has faced the issue of antibiotic resistance. Methicillin-resistant Staphylococcus aureus (MRSA) is a significant problem in various treatments and control of infections. Biocompatible materials with saturated fatty acids of different chain lengths (C8–C18) were studied as matrix formers of localized injectable vancomycin HCl (VCM)-loaded antisolvent-induced in situ forming matrices. The series of fatty acid-based in situ forming matrices showed a low viscosity (5.47–13.97 cPs) and pH value in the range of 5.16–6.78, with high injectability through a 27-G needle (1.55–3.12 N). The preparations exhibited low tolerance to high concentrations of KH2PO4 solution (1.88–5.42% v/v) and depicted an electrical potential change during phase transformation. Their phase transition and matrix formation at the microscopic and macroscopic levels depended on the chain length of fatty acids and solvent characteristics. The VCM release pattern depended on the nucleation/crystallization and solvent exchange behaviors of the delivery system. The 35% w/v of C12–C16 fatty acid-based in situ forming matrix prolonged the VCM release over seven days in which C12, C14, C16 –based formulation reached 56, 84, and 85% cumulative drug release at 7th day. The release data fitted well with Higuchi’s model. The developed formulations presented efficient antimicrobial activities against standard S. aureus, MRSA, Escherichia coli, and Candida albicans. Hence, VCM-loaded antisolvent-induced fatty acid-based in situ forming matrix is a potential local delivery system for the treatment of local Gram-positive infection sites, such as joints, eyes, dermis of surgery sites, etc., in the future

    Lincomycin HCl-Loaded Borneol-Based In Situ Gel for Periodontitis Treatment

    No full text
    Solvent exchange-induced in situ forming gel (ISG) has emerged as a versatile drug delivery system, particularly for periodontal pocket applications. In this study, we developed lincomycin HCl-loaded ISGs using a 40% borneol-based matrix and N-methyl pyrrolidone (NMP) as a solvent. The physicochemical properties and antimicrobial activities of the ISGs were evaluated. The prepared ISGs exhibited low viscosity and reduced surface tension, allowing for easy injection and spreadability. Gel formation increased the contact angle on agarose gel, while higher lincomycin HCl content decreased water tolerance and facilitated phase separation. The drug-loading influenced solvent exchange and matrix formation, resulting in thinner and inhomogeneous borneol matrices with slower gel formation and lower gel hardness. The lincomycin HCl-loaded borneol-based ISGs demonstrated sustained drug release above the minimum inhibitory concentration (MIC) for 8 days, following Fickian diffusion and fitting well with Higuchi’s equation. These formulations exhibited dose-dependent inhibition of Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 8739, and Prophyromonas gingivalis ATCC 33277, and the release of NMP effectively inhibited Candida albicans ATCC 10231. Overall, the 7.5% lincomycin HCl-loaded 40% borneol-based ISGs hold promise as localized drug delivery systems for periodontitis treatment

    Ways to Assess and Regulate the Performance of a Bi-Mechanism-Induced Borneol-Based In Situ Forming Matrix

    No full text
    As an alternative to the traditional polymeric-based system, it is now possible to use an in situ forming system that is based on small molecules. Borneol was used as matrix formation in this study. While triacetin was incorporated into the formulation for prolonging the drug release. The objective of this study is to understand the initial period of the solvent exchange mechanism at the molecular level, which would provide a basis for explaining the matrix formation and drug release phenomena. The evaluation of basic physical properties, matrix formation, in vitro drug release, and molecular dynamics (MD) simulation of borneol-based in situ forming matrixes (ISM) was conducted in this study. The proportion of triacetin was found to determine the increase in density and viscosity. The density value was found to be related to viscosity which could be used for the purpose of prediction. Slow self-assembly of ISM upon the addition of triacetin was associated with higher viscosity and lower surface tension. This phenomenon enabled the regulation of solvent exchange and led to sustaining the drug release. In MD simulation using AMBER Tools, the free movement of the drug and the rapid approach to equilibrium of both solvent and water molecule in a solvent exchange mechanism in borneol-free ISM was observed, supporting that sustained release would not occur. Water infiltration was slowed down and NMP movement was restricted by the addition of borneol and triacetin. In addition, the increased proportion of triacetin promoted the diminished down of all substances’ movement because of the viscosity. The diffusion constant of relevant molecules decreased with the addition of borneol and/or triacetin. Although the addition of triacetin tended to slow down the solvent exchange and molecular movement from computation modelling results, it may not guarantee to imply the best drug release control. The Low triacetin-incorporated (5%) borneol-based ISM showed the highest ability to sustain the drug release due to its self-assembly and has proper solvent exchange. MD simulation addressed the details of the mechanism at the beginning of the process. Therefore, both MD and classical methods contribute to a clearer understanding of solvent exchange from the molecular to macroscopic level and from the first nanosecond of the formulation contact with water to the 10-day of drug release. These would be beneficial for subsequent research and development efforts in small molecule-based in situ forming systems

    Computational Insight of Phase Transformation and Drug Release Behaviour of Doxycycline-Loaded Ibuprofen-Based In-Situ Forming Gel

    No full text
    This research investigates the gel formation behaviour and drug-controlling performance of doxycycline-loaded ibuprofen-based in-situ forming gels (DH-loaded IBU-based ISGs) for potential applications in periodontal treatment. The investigation begins by exploring the physical properties and gel formation behaviour of the ISGs, with a particular focus on determining their sustained release capabilities. To gain a deeper understanding of the molecular interactions and dynamics within the ISGs, molecular dynamic (MD) simulations are employed. The effects of adding IBU and DH on reducing surface tension and water tolerance properties, thus affecting molecular properties. The phase transformation phenomenon is observed around the interface, where droplets of ISGs move out to the water phase, leading to the precipitation of IBU around the interface. The optimization of drug release profiles ensures sustained local drug release over seven days, with a burst release observed on the first day. Interestingly, different organic solvents show varying abilities to control DH release, with dimethyl sulfoxide (DMSO) demonstrating superior control compared to N-Methyl-2-pyrrolidone (NMP). MD simulations using AMBER20 software provide valuable insights into the movement of individual molecules, as evidenced by root-mean-square deviation (RMSD) values. The addition of IBU to the system results in the retardation of IBU molecule movement, particularly evident in the DMSO series, with the diffusion constant value of DH reducing from 1.2452 to 0.3372 and in the NMP series from 0.3703 to 0.2245 after adding IBU. The RMSD values indicate a reduction in molecule fluctuation of DH, especially in the DMSO system, where it decreases from over 140 to 40 Å. Moreover, their radius of gyration is influenced by IBU, with the DMSO system showing lower values, suggesting an increase in molecular compactness. Notably, the DH-IBU configuration exhibits stable pairing through H-bonding, with a higher amount of H-bonding observed in the DMSO system, which is correlated with the drug retardation efficacy. These significant findings pave the way for the development of phase transformation mechanistic studies and offer new avenues for future design and optimization formulation in the ISG drug delivery systems field
    corecore