22 research outputs found

    Automated computational analysis reveals structural changes in the enteric nervous system of nNOS deficient mice

    Get PDF
    Neuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1−/− colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1−/− ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies

    Development of the Resource Prospector Planetary Rover

    Get PDF
    The Resource Prospector (RP) is an In-Situ Resource Utilization (ISRU) lunar rover mission under study by NASA. RP is planned to launch in 2020 to prospect for subsurface volatiles and to extract oxygen from lunar regolith. The mission will address several of NASA's "Strategic Knowledge Gaps" for lunar exploration. The mission will also address the Global Exploration Roadmap's strategic goal of using local resources for human exploration. The distribution of lunar subsurface volatiles drives the mission requirement for mobility. The spatial distribution is hypothesized to be governed by impact cratering with the top 0.5 m being patchy at scales of 100 m. The mixing time scale increases with depth (less frequent larger impacts). Consequently, increased mobility reduces the depth requirement for sampling. The target RP traverse will extend 1 km radially from the landing site to sample craters of varying sizes. Sampling craters with different ages will reveal possible volatile emplacement history. In 1 Ga, approximately 60-70 craters of 10 m diameter form per km2. Thus, the rover will need to sample at least ten of these craters, which may require a total traverse path length of 2-3 km. During 2014-2015, we developed an initial prototype rover for RP. The current design is a solar powered, four-wheeled vehicle, with hub motor drive, offset four wheel steering, and active suspension. Active suspension provides capabilities including changing vehicle ride height, traversing comparatively large obstacles, and controlling load on the wheels. All-wheel steering enables the vehicle to point arbitrarily while roving, e.g., to keep the solar array pointed at the sun while in motion. The offset steering combined with active suspension improves driving in soft soil. The rover's on-board software utilizes NASA's Core Flight Software, which is a reusable flight software environment. During 2015, we completed the initial rover software build, which provides low-level hardware interfaces, basic mobility control, waypoint driving, odometry, basic error checking, and camera services. Development of the prototype rover has enabled maturation of many of the subsystems to TRL 5. During the next year, we will conduct integrated testing of concepts of operation, navigation, and remote driving tools. In addition, we will perform environmental tests including radiation (avionics), thermal and thermal/vacuum (mechanisms), and gravity offload (mobility)

    Dental general anaesthetic receipt among Australians aged 15+ years, 1998–1999 to 2004–2005

    Get PDF
    Background Adults receive dental general anaesthetic (DGA) care when standard dental treatment is not possible. Receipt of DGA care is resource-intensive and not without risk. This study explores DGA receipt among 15+-year-old Australians by a range of risk indicators. Methods DGA data were obtained from Australia's Hospital Morbidity Database from 1998–1999 to 2004–2005. Poisson regression modeling was used to examine DGA rates in relation to age, sex, Indigenous status, location and procedure. Results The overall DGA rate was 472.79 per 100,000 (95% CI 471.50–474.09). Treatment of impacted teeth (63.7%) was the most common reason for DGA receipt, followed by dental caries treatment (12.4%), although marked variations were seen by age-group. After adjusting for other covariates, DGA rates among 15–19-year-olds were 13.20 (95% CI 12.65–13.78) times higher than their 85+-year-old counterparts. Females had 1.46 (95% CI 1.45–1.47) times the rate of their male counterparts, while those living in rural/remote areas had 2.70 (95% CI 2.68–2.72) times the rate of metropolitan-dwellers. DGA rates for non-Indigenous persons were 4.88 (95% CI 4.73–5.03) times those of Indigenous persons. The DGA rate for 1+ extractions was 461.9 per 100,000 (95% CI 460.6–463.2), compared with a rate of 23.6 per 100,000 (95% CI 23.3–23.9) for 1+ restorations. Conclusion Nearly two-thirds of DGAs were for treatment of impacted teeth. Persons aged 15–19 years were disproportionately represented among those receiving DGA care, along with females, rural/remote-dwellers and those identifying as non-Indigenous. More research is required to better understand the public health implications of DGA care among 15+-year-olds, and how the demand for receipt of such care might be reduced.Lisa M Jamieson and Kaye F Roberts-Thomso

    Childhood overweight and obesity in Qatar: A literature review

    No full text
    corecore