31 research outputs found

    High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda (Ailuropoda melanoleuca) in estrus and non-estrus

    Get PDF
    IntroductionThe giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus.MethodsThis study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity.Results and discussionThe results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future

    Association of IGF-I gene polymorphisms with milk yield and body size in Chinese dairy goats

    Get PDF
    The association of IGF-I gene polymorphisms with certain traits in 708 individuals of two Chinese dairy-goat breeds (Guanzhong and Xinong Saanen) was investigated. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods were employed in screening for genetic variation. Two novel mutations were detected in the 5'-flanking region and in intron 4 of IGF-I gene, viz., g.1617 G > A and g.5752 G > C (accession D26119.2), respectively. The associations of the g.1617 G > A mutation with milk yield and the body size were not significant (p > 0.05). However, in the case of g.5752 G > C, Xinong Saanen dairy goats with the CG genotype presented longer bodies (p < 0.05). Chest circumference (p < 0.05) was larger in Guanzhong goats with the GG genotype. In Xinong Saanen dairy goats with the CC genotype, milk yields were significantly higher during the first and second lactations (p < 0.05). Hence, the g.5752 G > C mutation could facilitate association analysis and serve as a genetic marker for Chinese dairy-goat breeding and genetics

    Analysis of PM2.5 Characteristics in Yancheng from 2017 to 2021 Based on Kolmogorov&ndash;Zurbenko Filter and PSCF Model

    No full text
    Based on the hourly monitoring data including meteorological elements and PM2.5 mass concentration in Yancheng from 2017 to 2021, PM2.5 mass concentration variations, influencing factors and source apportionment were studied by the Kolmogorov&ndash;Zurbenko filter and Potential Source Contribution Function Analysis (PSCF) method. The results showed that the mass concentration of PM2.5 in Yancheng showed a decreasing trend from 2017 to 2021, with a decline rate of about 33.8% (2017, 44.79 &plusmn; 31.22 &mu;g/m3; 2021, 29.66 &plusmn; 21.69 &mu;g/m3); the visibility increased by 18.4% (2017, 11.69 &plusmn; 6.46 km; 2021,13.8 &plusmn; 6.24 km), which is mainly related to emission reduction measures in China. The mass concentration of PM2.5 has significant seasonal variation characteristics, with the highest in winter, reaching 60.61 &mu;g/m3, and the lowest in summer, only 23.11 &mu;g/m3. The diurnal variation of PM2.5 showed a unimodal distribution, and concentration difference is obvious under the influence of land&ndash;sea breeze (36.60 &mu;g/m3, easterly wind; 43.57 &mu;g/m3, westerly wind). Meteorological factors have an important impact on the mass concentration of PM2.5, which fluctuates with seasons. It is calculated to have a good fitting relationship between the visibility and PM2.5 concentration, and the correlation decreases with the increase in humidity (&minus;0.71 ~ &minus;0.41). The relatively clean atmosphere under high humidity conditions is also prone to the obstruction to vision. The corresponding PM2.5 concentration varies significantly under different wind directions and wind speeds in Yancheng, and high values mainly come from the northwest&ndash;southeast&ndash;southwest direction. The potential source regions in autumn are mainly distributed in southwestern Jiangsu and northwestern Zhejiang; the potential source regions in winter are mainly located in southwestern Jiangsu, southern Anhui and northern Jiangxi

    Response of water quality to climate warming and atmospheric deposition in an alpine lake of Tianshan Mountains, Central Asia

    No full text
    Alpine lakes are usually unaffected by anthropogenic disturbance, yet these aquatic ecosystems are highly sensitive to climate warming and atmospheric deposition. It is unclear how water quality of alpine lakes has responded to these environmental changes. Unprecedented degradation in water quality (characterized by nutrient enrichment and phytoplankton blooms) had occurred in the Tianchi Lake, an alpine lake in the Tianshan Mountains. Here we measured the dust and precipitation chemistry to assess the source, magnitude, and impact of atmospheric deposition on nutrient stoichiometry of Tianchi Lake. Long-term (2015–2021) limnological data consisted of nutrient and chlorophyll were used to quantify the trends of lake water quality, as well as the association between phytoplankton biomass and air temperature. We proposed a critical nutrient model based on water quality guarantee probability to estimate the maximum allowable nutrient load. The results indicated that air pollutants from urban agglomeration and dust derived from semi-arid region represented the primary sources of atmospheric nutrient, which contributed 6.86 t nitrogen (N) and 0.23 t phosphorus (P) to the lake during 2021. Enhanced fertilization effect on phytoplankton due to high atmospheric deposition was expected to promote phytoplankton blooms, but unbalanced N:P ratio would exacerbate the P limitation of primary productivity. Climate warming seemed equally crucial synergistically to stimulate phytoplankton growth, the first appearance of phytoplankton blooms corresponded to the beginning of the warm period. Further studies had shown that increase in frequency and duration of heat waves would accelerate the eutrophication. To mitigate water quality degradation, the critical nutrient model suggested that 40.63 t N and 0.49 t P should be reduced. We conclude that the synergistic effects of climate warming and atmospheric deposition exacerbate the water quality of Tianchi Lake, even though it was protected well by strict environmental policies. More studies should be conducted to assess the potential impact of climate warming and atmospheric deposition on alpine lakes to ensure water quality safety and water ecological security

    Epidemiology of

    No full text
    Blastocystis sp., a unicellular intestinal parasite in humans and animals worldwide, is frequently found in immunocompromized patients and people in close contact with animals. Here, we reviewed recent studies on the prevalence, subtypes, and distribution of Blastocystis infection in humans and animals in China. To date, more than 12 provinces have reported Blastocystis infection in humans, with identification of six different subtypes (ST1, ST2, ST3, ST4, ST5, and ST6). The overall infection rate reported was 3.37% (3625/107,695), with the lowest prevalence (0.80%) in Fujian province and the highest prevalence (100%) in Guangdong province. ST3 (62%, 186/300) was the most dominant subtype, identified in all tested provinces in China. A total of eight provinces have reported Blastocystis infection in various animals, with the overall prevalence being 24.66% (1202/4874). Molecular analysis revealed 14 subtypes that infected animals, including 10 known (ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST10, ST13, ST14), and 4 novel (Novel1, Novel2, Novel3, Novel4) subtypes. ST5 was the dominant subtype infecting artiodactyls (44.1%, 460/1044), while ST1 commonly infected carnivores (45.5%, 5/11). These findings provide insights into the epidemiological behavior of Blastocystis sp. in China, and could help in developing effective control strategies against the parasite

    Comparison of a commercial ELISA and indirect hemagglutination assay with the modified agglutination test for detection of Toxoplasma gondii antibodies in giant panda (Ailuropoda melanoleuca)

    No full text
    Toxoplasma gondii is a worldwide-distributed zoonotic protozoan parasite which causes toxoplasmosis and has a significant effect on public health. In the giant panda (Ailuropoda melanoleuca), toxoplasmosis can cause asymptomatic infections, reproductive disorder and even death, which poses a serious threat to the conservation of this rare protected species. Therefore, serological investigation of T. gondii is essential to understanding its risk to giant pandas, however, there are no specific testing kits for giant pandas. Previous research has used MAT as the reference method for screening T. gondii, to investigate this further, this study focused on the agreement comparing of MAT with ELISA and IHA tests for detecting T. gondii antibodies in 100 blood samples from 55 captive giant pandas in Chengdu, China. The results showed 87.0%, 87.0%, 84.0%, samples were sero-positive for T. gondii using ELISA (kits a, b, c), respectively, while MAT and IHA tests were 84.0% and 9.0% sero-positive, respectively. There was no significant difference between MAT and the three ELISA kits and these two methods had substantial agreement (0.61 < қ ≤ 0.80). Meanwhile, there was a significant difference (P < 0.001) between MAT and IHA, and these two methods had only a slight agreement (қ ≤ 0.20). The relative sensitivity of the ELISA (kits a, b, c) were 89.0%, 91.5% and 95.1%, and the specificity were 86.7%, 80.0% and 80.0%, respectively, which showed these three ELISA kits all had great accuracy. It is suggested that MAT is the recommended test method for primary screening T. gondii in giant pandas and then verified by ELISA

    Table_1_High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda (Ailuropoda melanoleuca) in estrus and non-estrus.DOCX

    No full text
    IntroductionThe giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus.MethodsThis study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity.Results and discussionThe results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future.</p
    corecore